Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”
Downsizing to sub-nm is a general strategy to reduce the cost of catalysts. However, theoretical Wulff-constructed model suggests that sub-nm clusters show little activity for various reactions such as ammonia decomposition and ammonia synthesis because of the lack of active sites. As clusters may d...
Gespeichert in:
Veröffentlicht in: | Nano research 2018-09, Vol.11 (9), p.4774-4785 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4785 |
---|---|
container_issue | 9 |
container_start_page | 4774 |
container_title | Nano research |
container_volume | 11 |
creator | Li, Jinpeng Wang, Weiyang Chen, Wenxing Gong, Qinmei Luo, Jun Lin, Ruoqian Xin, Huolin Zhang, Hui Wang, Dingsheng Peng, Qing Zhu, Wei Chen, Chen Li, Yadong |
description | Downsizing to sub-nm is a general strategy to reduce the cost of catalysts. However, theoretical Wulff-constructed model suggests that sub-nm clusters show little activity for various reactions such as ammonia decomposition and ammonia synthesis because of the lack of active sites. As clusters may deviate from the ideal model construction under reaction conditions, a host–guest strategy to synthesize thermally stable 1.0 nm monodispersed Ru clusters by the pyrolysis of MIL-101 hosts is reported here to verify the hypothesis. For ammonia decomposition, the activity of the Ru clusters is 25 times higher than that of commercial Ru/active carbon (AC) at full-conversion temperature, while for ammonia synthesis, the activity of the Ru clusters is 500 times as high as that of promoted Ru NPs counterpart. The catalyst also maintains its activities for 40 h without any increase in the size. This model can be used to develop a host–guest strategy for designing thermally stable sub-nm clusters to atomic–efficiently catalyze reactions. |
doi_str_mv | 10.1007/s12274-018-2062-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2021759325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2021759325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-61ea317f406aba1cac157ff313d58c8ec384d8bb329867777614ef07195f73c93</originalsourceid><addsrcrecordid>eNp1kD1OAzEQhVcIJELgAHSWqBc83n86iPiTkCiA2vJ6beIkawfPbhGqVJwCLpeT4LAgKqaZGc333kgvio6BngKlxRkCY0UaUyhjRnMWpzvRCKqqjGmo3d8ZWLofHSDOaGAgLUfR-2Nfx7Ylvu-mypq-JXLRY6c8EUiEJUprI42yXVga4l0djkSKTixWYdDOk0ZJ1y4dms44-03hygYzNEicJqJtnTXinFx6JeYkHMhm_YHmTRGcCjlfKNysPw-jPS0WqI5--jh6vr56mtzG9w83d5OL-1gmJeviHJRIoNApzUUtQAoJWaF1AkmTlbJUgUqbsq4TVpV5ESqHVGlaQJXpIpFVMo5OBt-ld6-9wo7PXO9teMkZZVBkVcKyQMFASe8QvdJ86U0r_IoD5du4-RA3D3Hzbdw8DRo2aDCw9kX5P-f_RV81iYYG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021759325</pqid></control><display><type>article</type><title>Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Jinpeng ; Wang, Weiyang ; Chen, Wenxing ; Gong, Qinmei ; Luo, Jun ; Lin, Ruoqian ; Xin, Huolin ; Zhang, Hui ; Wang, Dingsheng ; Peng, Qing ; Zhu, Wei ; Chen, Chen ; Li, Yadong</creator><creatorcontrib>Li, Jinpeng ; Wang, Weiyang ; Chen, Wenxing ; Gong, Qinmei ; Luo, Jun ; Lin, Ruoqian ; Xin, Huolin ; Zhang, Hui ; Wang, Dingsheng ; Peng, Qing ; Zhu, Wei ; Chen, Chen ; Li, Yadong</creatorcontrib><description>Downsizing to sub-nm is a general strategy to reduce the cost of catalysts. However, theoretical Wulff-constructed model suggests that sub-nm clusters show little activity for various reactions such as ammonia decomposition and ammonia synthesis because of the lack of active sites. As clusters may deviate from the ideal model construction under reaction conditions, a host–guest strategy to synthesize thermally stable 1.0 nm monodispersed Ru clusters by the pyrolysis of MIL-101 hosts is reported here to verify the hypothesis. For ammonia decomposition, the activity of the Ru clusters is 25 times higher than that of commercial Ru/active carbon (AC) at full-conversion temperature, while for ammonia synthesis, the activity of the Ru clusters is 500 times as high as that of promoted Ru NPs counterpart. The catalyst also maintains its activities for 40 h without any increase in the size. This model can be used to develop a host–guest strategy for designing thermally stable sub-nm clusters to atomic–efficiently catalyze reactions.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-018-2062-4</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Activated carbon ; Ammonia ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Catalysis ; Catalysts ; Chemical reactions ; Chemical synthesis ; Chemistry and Materials Science ; Clusters ; Condensed Matter Physics ; Construction costs ; Decomposition ; Decomposition reactions ; Downsizing ; Materials Science ; Nanotechnology ; Pyrolysis ; Research Article ; Ruthenium ; Strategy ; Thermal stability</subject><ispartof>Nano research, 2018-09, Vol.11 (9), p.4774-4785</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Nano Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-61ea317f406aba1cac157ff313d58c8ec384d8bb329867777614ef07195f73c93</citedby><cites>FETCH-LOGICAL-c382t-61ea317f406aba1cac157ff313d58c8ec384d8bb329867777614ef07195f73c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-018-2062-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-018-2062-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Jinpeng</creatorcontrib><creatorcontrib>Wang, Weiyang</creatorcontrib><creatorcontrib>Chen, Wenxing</creatorcontrib><creatorcontrib>Gong, Qinmei</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Lin, Ruoqian</creatorcontrib><creatorcontrib>Xin, Huolin</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Wang, Dingsheng</creatorcontrib><creatorcontrib>Peng, Qing</creatorcontrib><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Li, Yadong</creatorcontrib><title>Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Downsizing to sub-nm is a general strategy to reduce the cost of catalysts. However, theoretical Wulff-constructed model suggests that sub-nm clusters show little activity for various reactions such as ammonia decomposition and ammonia synthesis because of the lack of active sites. As clusters may deviate from the ideal model construction under reaction conditions, a host–guest strategy to synthesize thermally stable 1.0 nm monodispersed Ru clusters by the pyrolysis of MIL-101 hosts is reported here to verify the hypothesis. For ammonia decomposition, the activity of the Ru clusters is 25 times higher than that of commercial Ru/active carbon (AC) at full-conversion temperature, while for ammonia synthesis, the activity of the Ru clusters is 500 times as high as that of promoted Ru NPs counterpart. The catalyst also maintains its activities for 40 h without any increase in the size. This model can be used to develop a host–guest strategy for designing thermally stable sub-nm clusters to atomic–efficiently catalyze reactions.</description><subject>Activated carbon</subject><subject>Ammonia</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Clusters</subject><subject>Condensed Matter Physics</subject><subject>Construction costs</subject><subject>Decomposition</subject><subject>Decomposition reactions</subject><subject>Downsizing</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Pyrolysis</subject><subject>Research Article</subject><subject>Ruthenium</subject><subject>Strategy</subject><subject>Thermal stability</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1OAzEQhVcIJELgAHSWqBc83n86iPiTkCiA2vJ6beIkawfPbhGqVJwCLpeT4LAgKqaZGc333kgvio6BngKlxRkCY0UaUyhjRnMWpzvRCKqqjGmo3d8ZWLofHSDOaGAgLUfR-2Nfx7Ylvu-mypq-JXLRY6c8EUiEJUprI42yXVga4l0djkSKTixWYdDOk0ZJ1y4dms44-03hygYzNEicJqJtnTXinFx6JeYkHMhm_YHmTRGcCjlfKNysPw-jPS0WqI5--jh6vr56mtzG9w83d5OL-1gmJeviHJRIoNApzUUtQAoJWaF1AkmTlbJUgUqbsq4TVpV5ESqHVGlaQJXpIpFVMo5OBt-ld6-9wo7PXO9teMkZZVBkVcKyQMFASe8QvdJ86U0r_IoD5du4-RA3D3Hzbdw8DRo2aDCw9kX5P-f_RV81iYYG</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Li, Jinpeng</creator><creator>Wang, Weiyang</creator><creator>Chen, Wenxing</creator><creator>Gong, Qinmei</creator><creator>Luo, Jun</creator><creator>Lin, Ruoqian</creator><creator>Xin, Huolin</creator><creator>Zhang, Hui</creator><creator>Wang, Dingsheng</creator><creator>Peng, Qing</creator><creator>Zhu, Wei</creator><creator>Chen, Chen</creator><creator>Li, Yadong</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180901</creationdate><title>Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”</title><author>Li, Jinpeng ; Wang, Weiyang ; Chen, Wenxing ; Gong, Qinmei ; Luo, Jun ; Lin, Ruoqian ; Xin, Huolin ; Zhang, Hui ; Wang, Dingsheng ; Peng, Qing ; Zhu, Wei ; Chen, Chen ; Li, Yadong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-61ea317f406aba1cac157ff313d58c8ec384d8bb329867777614ef07195f73c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activated carbon</topic><topic>Ammonia</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Clusters</topic><topic>Condensed Matter Physics</topic><topic>Construction costs</topic><topic>Decomposition</topic><topic>Decomposition reactions</topic><topic>Downsizing</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Pyrolysis</topic><topic>Research Article</topic><topic>Ruthenium</topic><topic>Strategy</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinpeng</creatorcontrib><creatorcontrib>Wang, Weiyang</creatorcontrib><creatorcontrib>Chen, Wenxing</creatorcontrib><creatorcontrib>Gong, Qinmei</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Lin, Ruoqian</creatorcontrib><creatorcontrib>Xin, Huolin</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Wang, Dingsheng</creatorcontrib><creatorcontrib>Peng, Qing</creatorcontrib><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Li, Yadong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jinpeng</au><au>Wang, Weiyang</au><au>Chen, Wenxing</au><au>Gong, Qinmei</au><au>Luo, Jun</au><au>Lin, Ruoqian</au><au>Xin, Huolin</au><au>Zhang, Hui</au><au>Wang, Dingsheng</au><au>Peng, Qing</au><au>Zhu, Wei</au><au>Chen, Chen</au><au>Li, Yadong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>11</volume><issue>9</issue><spage>4774</spage><epage>4785</epage><pages>4774-4785</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Downsizing to sub-nm is a general strategy to reduce the cost of catalysts. However, theoretical Wulff-constructed model suggests that sub-nm clusters show little activity for various reactions such as ammonia decomposition and ammonia synthesis because of the lack of active sites. As clusters may deviate from the ideal model construction under reaction conditions, a host–guest strategy to synthesize thermally stable 1.0 nm monodispersed Ru clusters by the pyrolysis of MIL-101 hosts is reported here to verify the hypothesis. For ammonia decomposition, the activity of the Ru clusters is 25 times higher than that of commercial Ru/active carbon (AC) at full-conversion temperature, while for ammonia synthesis, the activity of the Ru clusters is 500 times as high as that of promoted Ru NPs counterpart. The catalyst also maintains its activities for 40 h without any increase in the size. This model can be used to develop a host–guest strategy for designing thermally stable sub-nm clusters to atomic–efficiently catalyze reactions.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-018-2062-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2018-09, Vol.11 (9), p.4774-4785 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2021759325 |
source | SpringerLink Journals - AutoHoldings |
subjects | Activated carbon Ammonia Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Catalysis Catalysts Chemical reactions Chemical synthesis Chemistry and Materials Science Clusters Condensed Matter Physics Construction costs Decomposition Decomposition reactions Downsizing Materials Science Nanotechnology Pyrolysis Research Article Ruthenium Strategy Thermal stability |
title | Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles” |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub-nm%20ruthenium%20cluster%20as%20an%20efficient%20and%20robust%20catalyst%20for%20decomposition%20and%20synthesis%20of%20ammonia:%20Break%20the%20%E2%80%9Csize%20shackles%E2%80%9D&rft.jtitle=Nano%20research&rft.au=Li,%20Jinpeng&rft.date=2018-09-01&rft.volume=11&rft.issue=9&rft.spage=4774&rft.epage=4785&rft.pages=4774-4785&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-018-2062-4&rft_dat=%3Cproquest_cross%3E2021759325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2021759325&rft_id=info:pmid/&rfr_iscdi=true |