Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”

Downsizing to sub-nm is a general strategy to reduce the cost of catalysts. However, theoretical Wulff-constructed model suggests that sub-nm clusters show little activity for various reactions such as ammonia decomposition and ammonia synthesis because of the lack of active sites. As clusters may d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2018-09, Vol.11 (9), p.4774-4785
Hauptverfasser: Li, Jinpeng, Wang, Weiyang, Chen, Wenxing, Gong, Qinmei, Luo, Jun, Lin, Ruoqian, Xin, Huolin, Zhang, Hui, Wang, Dingsheng, Peng, Qing, Zhu, Wei, Chen, Chen, Li, Yadong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4785
container_issue 9
container_start_page 4774
container_title Nano research
container_volume 11
creator Li, Jinpeng
Wang, Weiyang
Chen, Wenxing
Gong, Qinmei
Luo, Jun
Lin, Ruoqian
Xin, Huolin
Zhang, Hui
Wang, Dingsheng
Peng, Qing
Zhu, Wei
Chen, Chen
Li, Yadong
description Downsizing to sub-nm is a general strategy to reduce the cost of catalysts. However, theoretical Wulff-constructed model suggests that sub-nm clusters show little activity for various reactions such as ammonia decomposition and ammonia synthesis because of the lack of active sites. As clusters may deviate from the ideal model construction under reaction conditions, a host–guest strategy to synthesize thermally stable 1.0 nm monodispersed Ru clusters by the pyrolysis of MIL-101 hosts is reported here to verify the hypothesis. For ammonia decomposition, the activity of the Ru clusters is 25 times higher than that of commercial Ru/active carbon (AC) at full-conversion temperature, while for ammonia synthesis, the activity of the Ru clusters is 500 times as high as that of promoted Ru NPs counterpart. The catalyst also maintains its activities for 40 h without any increase in the size. This model can be used to develop a host–guest strategy for designing thermally stable sub-nm clusters to atomic–efficiently catalyze reactions.
doi_str_mv 10.1007/s12274-018-2062-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2021759325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2021759325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-61ea317f406aba1cac157ff313d58c8ec384d8bb329867777614ef07195f73c93</originalsourceid><addsrcrecordid>eNp1kD1OAzEQhVcIJELgAHSWqBc83n86iPiTkCiA2vJ6beIkawfPbhGqVJwCLpeT4LAgKqaZGc333kgvio6BngKlxRkCY0UaUyhjRnMWpzvRCKqqjGmo3d8ZWLofHSDOaGAgLUfR-2Nfx7Ylvu-mypq-JXLRY6c8EUiEJUprI42yXVga4l0djkSKTixWYdDOk0ZJ1y4dms44-03hygYzNEicJqJtnTXinFx6JeYkHMhm_YHmTRGcCjlfKNysPw-jPS0WqI5--jh6vr56mtzG9w83d5OL-1gmJeviHJRIoNApzUUtQAoJWaF1AkmTlbJUgUqbsq4TVpV5ESqHVGlaQJXpIpFVMo5OBt-ld6-9wo7PXO9teMkZZVBkVcKyQMFASe8QvdJ86U0r_IoD5du4-RA3D3Hzbdw8DRo2aDCw9kX5P-f_RV81iYYG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021759325</pqid></control><display><type>article</type><title>Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Jinpeng ; Wang, Weiyang ; Chen, Wenxing ; Gong, Qinmei ; Luo, Jun ; Lin, Ruoqian ; Xin, Huolin ; Zhang, Hui ; Wang, Dingsheng ; Peng, Qing ; Zhu, Wei ; Chen, Chen ; Li, Yadong</creator><creatorcontrib>Li, Jinpeng ; Wang, Weiyang ; Chen, Wenxing ; Gong, Qinmei ; Luo, Jun ; Lin, Ruoqian ; Xin, Huolin ; Zhang, Hui ; Wang, Dingsheng ; Peng, Qing ; Zhu, Wei ; Chen, Chen ; Li, Yadong</creatorcontrib><description>Downsizing to sub-nm is a general strategy to reduce the cost of catalysts. However, theoretical Wulff-constructed model suggests that sub-nm clusters show little activity for various reactions such as ammonia decomposition and ammonia synthesis because of the lack of active sites. As clusters may deviate from the ideal model construction under reaction conditions, a host–guest strategy to synthesize thermally stable 1.0 nm monodispersed Ru clusters by the pyrolysis of MIL-101 hosts is reported here to verify the hypothesis. For ammonia decomposition, the activity of the Ru clusters is 25 times higher than that of commercial Ru/active carbon (AC) at full-conversion temperature, while for ammonia synthesis, the activity of the Ru clusters is 500 times as high as that of promoted Ru NPs counterpart. The catalyst also maintains its activities for 40 h without any increase in the size. This model can be used to develop a host–guest strategy for designing thermally stable sub-nm clusters to atomic–efficiently catalyze reactions.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-018-2062-4</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Activated carbon ; Ammonia ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Catalysis ; Catalysts ; Chemical reactions ; Chemical synthesis ; Chemistry and Materials Science ; Clusters ; Condensed Matter Physics ; Construction costs ; Decomposition ; Decomposition reactions ; Downsizing ; Materials Science ; Nanotechnology ; Pyrolysis ; Research Article ; Ruthenium ; Strategy ; Thermal stability</subject><ispartof>Nano research, 2018-09, Vol.11 (9), p.4774-4785</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Nano Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-61ea317f406aba1cac157ff313d58c8ec384d8bb329867777614ef07195f73c93</citedby><cites>FETCH-LOGICAL-c382t-61ea317f406aba1cac157ff313d58c8ec384d8bb329867777614ef07195f73c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-018-2062-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-018-2062-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Jinpeng</creatorcontrib><creatorcontrib>Wang, Weiyang</creatorcontrib><creatorcontrib>Chen, Wenxing</creatorcontrib><creatorcontrib>Gong, Qinmei</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Lin, Ruoqian</creatorcontrib><creatorcontrib>Xin, Huolin</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Wang, Dingsheng</creatorcontrib><creatorcontrib>Peng, Qing</creatorcontrib><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Li, Yadong</creatorcontrib><title>Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Downsizing to sub-nm is a general strategy to reduce the cost of catalysts. However, theoretical Wulff-constructed model suggests that sub-nm clusters show little activity for various reactions such as ammonia decomposition and ammonia synthesis because of the lack of active sites. As clusters may deviate from the ideal model construction under reaction conditions, a host–guest strategy to synthesize thermally stable 1.0 nm monodispersed Ru clusters by the pyrolysis of MIL-101 hosts is reported here to verify the hypothesis. For ammonia decomposition, the activity of the Ru clusters is 25 times higher than that of commercial Ru/active carbon (AC) at full-conversion temperature, while for ammonia synthesis, the activity of the Ru clusters is 500 times as high as that of promoted Ru NPs counterpart. The catalyst also maintains its activities for 40 h without any increase in the size. This model can be used to develop a host–guest strategy for designing thermally stable sub-nm clusters to atomic–efficiently catalyze reactions.</description><subject>Activated carbon</subject><subject>Ammonia</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Clusters</subject><subject>Condensed Matter Physics</subject><subject>Construction costs</subject><subject>Decomposition</subject><subject>Decomposition reactions</subject><subject>Downsizing</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Pyrolysis</subject><subject>Research Article</subject><subject>Ruthenium</subject><subject>Strategy</subject><subject>Thermal stability</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1OAzEQhVcIJELgAHSWqBc83n86iPiTkCiA2vJ6beIkawfPbhGqVJwCLpeT4LAgKqaZGc333kgvio6BngKlxRkCY0UaUyhjRnMWpzvRCKqqjGmo3d8ZWLofHSDOaGAgLUfR-2Nfx7Ylvu-mypq-JXLRY6c8EUiEJUprI42yXVga4l0djkSKTixWYdDOk0ZJ1y4dms44-03hygYzNEicJqJtnTXinFx6JeYkHMhm_YHmTRGcCjlfKNysPw-jPS0WqI5--jh6vr56mtzG9w83d5OL-1gmJeviHJRIoNApzUUtQAoJWaF1AkmTlbJUgUqbsq4TVpV5ESqHVGlaQJXpIpFVMo5OBt-ld6-9wo7PXO9teMkZZVBkVcKyQMFASe8QvdJ86U0r_IoD5du4-RA3D3Hzbdw8DRo2aDCw9kX5P-f_RV81iYYG</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Li, Jinpeng</creator><creator>Wang, Weiyang</creator><creator>Chen, Wenxing</creator><creator>Gong, Qinmei</creator><creator>Luo, Jun</creator><creator>Lin, Ruoqian</creator><creator>Xin, Huolin</creator><creator>Zhang, Hui</creator><creator>Wang, Dingsheng</creator><creator>Peng, Qing</creator><creator>Zhu, Wei</creator><creator>Chen, Chen</creator><creator>Li, Yadong</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180901</creationdate><title>Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”</title><author>Li, Jinpeng ; Wang, Weiyang ; Chen, Wenxing ; Gong, Qinmei ; Luo, Jun ; Lin, Ruoqian ; Xin, Huolin ; Zhang, Hui ; Wang, Dingsheng ; Peng, Qing ; Zhu, Wei ; Chen, Chen ; Li, Yadong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-61ea317f406aba1cac157ff313d58c8ec384d8bb329867777614ef07195f73c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activated carbon</topic><topic>Ammonia</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Clusters</topic><topic>Condensed Matter Physics</topic><topic>Construction costs</topic><topic>Decomposition</topic><topic>Decomposition reactions</topic><topic>Downsizing</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Pyrolysis</topic><topic>Research Article</topic><topic>Ruthenium</topic><topic>Strategy</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinpeng</creatorcontrib><creatorcontrib>Wang, Weiyang</creatorcontrib><creatorcontrib>Chen, Wenxing</creatorcontrib><creatorcontrib>Gong, Qinmei</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Lin, Ruoqian</creatorcontrib><creatorcontrib>Xin, Huolin</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Wang, Dingsheng</creatorcontrib><creatorcontrib>Peng, Qing</creatorcontrib><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Li, Yadong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jinpeng</au><au>Wang, Weiyang</au><au>Chen, Wenxing</au><au>Gong, Qinmei</au><au>Luo, Jun</au><au>Lin, Ruoqian</au><au>Xin, Huolin</au><au>Zhang, Hui</au><au>Wang, Dingsheng</au><au>Peng, Qing</au><au>Zhu, Wei</au><au>Chen, Chen</au><au>Li, Yadong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>11</volume><issue>9</issue><spage>4774</spage><epage>4785</epage><pages>4774-4785</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Downsizing to sub-nm is a general strategy to reduce the cost of catalysts. However, theoretical Wulff-constructed model suggests that sub-nm clusters show little activity for various reactions such as ammonia decomposition and ammonia synthesis because of the lack of active sites. As clusters may deviate from the ideal model construction under reaction conditions, a host–guest strategy to synthesize thermally stable 1.0 nm monodispersed Ru clusters by the pyrolysis of MIL-101 hosts is reported here to verify the hypothesis. For ammonia decomposition, the activity of the Ru clusters is 25 times higher than that of commercial Ru/active carbon (AC) at full-conversion temperature, while for ammonia synthesis, the activity of the Ru clusters is 500 times as high as that of promoted Ru NPs counterpart. The catalyst also maintains its activities for 40 h without any increase in the size. This model can be used to develop a host–guest strategy for designing thermally stable sub-nm clusters to atomic–efficiently catalyze reactions.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-018-2062-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2018-09, Vol.11 (9), p.4774-4785
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2021759325
source SpringerLink Journals - AutoHoldings
subjects Activated carbon
Ammonia
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Catalysis
Catalysts
Chemical reactions
Chemical synthesis
Chemistry and Materials Science
Clusters
Condensed Matter Physics
Construction costs
Decomposition
Decomposition reactions
Downsizing
Materials Science
Nanotechnology
Pyrolysis
Research Article
Ruthenium
Strategy
Thermal stability
title Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub-nm%20ruthenium%20cluster%20as%20an%20efficient%20and%20robust%20catalyst%20for%20decomposition%20and%20synthesis%20of%20ammonia:%20Break%20the%20%E2%80%9Csize%20shackles%E2%80%9D&rft.jtitle=Nano%20research&rft.au=Li,%20Jinpeng&rft.date=2018-09-01&rft.volume=11&rft.issue=9&rft.spage=4774&rft.epage=4785&rft.pages=4774-4785&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-018-2062-4&rft_dat=%3Cproquest_cross%3E2021759325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2021759325&rft_id=info:pmid/&rfr_iscdi=true