An Embedding Based IR Model for Disaster Situations
Twitter ( http://twitter.com ) is one of the most popular social networking platforms. Twitter users can easily broadcast disaster-specific information, which, if effectively mined, can assist in relief operations. However, the brevity and informal nature of tweets pose a challenge to Information Re...
Gespeichert in:
Veröffentlicht in: | Information systems frontiers 2018-10, Vol.20 (5), p.925-932 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 932 |
---|---|
container_issue | 5 |
container_start_page | 925 |
container_title | Information systems frontiers |
container_volume | 20 |
creator | Bandyopadhyay, Ayan Ganguly, Debasis Mitra, Mandar Saha, Sanjoy Kumar Jones, Gareth J.F. |
description | Twitter (
http://twitter.com
) is one of the most popular social networking platforms. Twitter users can easily broadcast disaster-specific information, which, if effectively mined, can assist in relief operations. However, the brevity and informal nature of tweets pose a challenge to Information Retrieval (IR) researchers. In this paper, we successfully use word embedding techniques to improve ranking for ad-hoc queries on microblog data. Our experiments with the ‘Social Media for Emergency Relief and Preparedness’ (SMERP) dataset provided at an ECIR 2017 workshop show that these techniques outperform conventional term-matching based IR models. In addition, we show that, for the SMERP task, our word embedding based method is more effective if the embeddings are generated from the disaster specific SMERP data, than when they are trained on the large social media collection provided for the TREC (
http://trec.nist.gov/
) 2011 Microblog track dataset. |
doi_str_mv | 10.1007/s10796-018-9847-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2021754659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2021754659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2c14f459ca40bc193ebea9de2200ad6961d30080efaa0ae1da486c6ae728db123</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssTbM2IkdL0spUKkIicfacuJJlapNip0u-HtSBYkVq7mLe-5Ih7FrhFsEMHcJwVgtAAthi8wIfcImmBspbIb2dMiqMEIpqc_ZRUobANTS5BOmZi1f7EoKoWnX_N4nCnz5xl-6QFted5E_NMmnniJ_b_qD75uuTZfsrPbbRFe_d8o-Hxcf82exen1azmcrUSnUvZAVZnWW28pnUFZoFZXkbSApAXzQVmNQAAVQ7T14wuCzQlfak5FFKFGqKbsZd_ex-zpQ6t2mO8R2eOkkSDR5pnM7tHBsVbFLKVLt9rHZ-fjtENzRjRvduMGNO7pxemDkyKSh264p_i3_D_0AoSZlTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021754659</pqid></control><display><type>article</type><title>An Embedding Based IR Model for Disaster Situations</title><source>SpringerLink Journals</source><creator>Bandyopadhyay, Ayan ; Ganguly, Debasis ; Mitra, Mandar ; Saha, Sanjoy Kumar ; Jones, Gareth J.F.</creator><creatorcontrib>Bandyopadhyay, Ayan ; Ganguly, Debasis ; Mitra, Mandar ; Saha, Sanjoy Kumar ; Jones, Gareth J.F.</creatorcontrib><description>Twitter (
http://twitter.com
) is one of the most popular social networking platforms. Twitter users can easily broadcast disaster-specific information, which, if effectively mined, can assist in relief operations. However, the brevity and informal nature of tweets pose a challenge to Information Retrieval (IR) researchers. In this paper, we successfully use word embedding techniques to improve ranking for ad-hoc queries on microblog data. Our experiments with the ‘Social Media for Emergency Relief and Preparedness’ (SMERP) dataset provided at an ECIR 2017 workshop show that these techniques outperform conventional term-matching based IR models. In addition, we show that, for the SMERP task, our word embedding based method is more effective if the embeddings are generated from the disaster specific SMERP data, than when they are trained on the large social media collection provided for the TREC (
http://trec.nist.gov/
) 2011 Microblog track dataset.</description><identifier>ISSN: 1387-3326</identifier><identifier>EISSN: 1572-9419</identifier><identifier>DOI: 10.1007/s10796-018-9847-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Business and Management ; Control ; Digital media ; Disaster management ; Embedding ; Emergency management ; Emergency preparedness ; Information retrieval ; Information systems ; IT in Business ; Management of Computing and Information Systems ; Operations Research/Decision Theory ; Social networks ; Systems Theory</subject><ispartof>Information systems frontiers, 2018-10, Vol.20 (5), p.925-932</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Information Systems Frontiers is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2c14f459ca40bc193ebea9de2200ad6961d30080efaa0ae1da486c6ae728db123</citedby><cites>FETCH-LOGICAL-c316t-2c14f459ca40bc193ebea9de2200ad6961d30080efaa0ae1da486c6ae728db123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10796-018-9847-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10796-018-9847-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bandyopadhyay, Ayan</creatorcontrib><creatorcontrib>Ganguly, Debasis</creatorcontrib><creatorcontrib>Mitra, Mandar</creatorcontrib><creatorcontrib>Saha, Sanjoy Kumar</creatorcontrib><creatorcontrib>Jones, Gareth J.F.</creatorcontrib><title>An Embedding Based IR Model for Disaster Situations</title><title>Information systems frontiers</title><addtitle>Inf Syst Front</addtitle><description>Twitter (
http://twitter.com
) is one of the most popular social networking platforms. Twitter users can easily broadcast disaster-specific information, which, if effectively mined, can assist in relief operations. However, the brevity and informal nature of tweets pose a challenge to Information Retrieval (IR) researchers. In this paper, we successfully use word embedding techniques to improve ranking for ad-hoc queries on microblog data. Our experiments with the ‘Social Media for Emergency Relief and Preparedness’ (SMERP) dataset provided at an ECIR 2017 workshop show that these techniques outperform conventional term-matching based IR models. In addition, we show that, for the SMERP task, our word embedding based method is more effective if the embeddings are generated from the disaster specific SMERP data, than when they are trained on the large social media collection provided for the TREC (
http://trec.nist.gov/
) 2011 Microblog track dataset.</description><subject>Business and Management</subject><subject>Control</subject><subject>Digital media</subject><subject>Disaster management</subject><subject>Embedding</subject><subject>Emergency management</subject><subject>Emergency preparedness</subject><subject>Information retrieval</subject><subject>Information systems</subject><subject>IT in Business</subject><subject>Management of Computing and Information Systems</subject><subject>Operations Research/Decision Theory</subject><subject>Social networks</subject><subject>Systems Theory</subject><issn>1387-3326</issn><issn>1572-9419</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtOwzAQRS0EEqXwAewssTbM2IkdL0spUKkIicfacuJJlapNip0u-HtSBYkVq7mLe-5Ih7FrhFsEMHcJwVgtAAthi8wIfcImmBspbIb2dMiqMEIpqc_ZRUobANTS5BOmZi1f7EoKoWnX_N4nCnz5xl-6QFted5E_NMmnniJ_b_qD75uuTZfsrPbbRFe_d8o-Hxcf82exen1azmcrUSnUvZAVZnWW28pnUFZoFZXkbSApAXzQVmNQAAVQ7T14wuCzQlfak5FFKFGqKbsZd_ex-zpQ6t2mO8R2eOkkSDR5pnM7tHBsVbFLKVLt9rHZ-fjtENzRjRvduMGNO7pxemDkyKSh264p_i3_D_0AoSZlTg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Bandyopadhyay, Ayan</creator><creator>Ganguly, Debasis</creator><creator>Mitra, Mandar</creator><creator>Saha, Sanjoy Kumar</creator><creator>Jones, Gareth J.F.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20181001</creationdate><title>An Embedding Based IR Model for Disaster Situations</title><author>Bandyopadhyay, Ayan ; Ganguly, Debasis ; Mitra, Mandar ; Saha, Sanjoy Kumar ; Jones, Gareth J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2c14f459ca40bc193ebea9de2200ad6961d30080efaa0ae1da486c6ae728db123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Business and Management</topic><topic>Control</topic><topic>Digital media</topic><topic>Disaster management</topic><topic>Embedding</topic><topic>Emergency management</topic><topic>Emergency preparedness</topic><topic>Information retrieval</topic><topic>Information systems</topic><topic>IT in Business</topic><topic>Management of Computing and Information Systems</topic><topic>Operations Research/Decision Theory</topic><topic>Social networks</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandyopadhyay, Ayan</creatorcontrib><creatorcontrib>Ganguly, Debasis</creatorcontrib><creatorcontrib>Mitra, Mandar</creatorcontrib><creatorcontrib>Saha, Sanjoy Kumar</creatorcontrib><creatorcontrib>Jones, Gareth J.F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Information systems frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandyopadhyay, Ayan</au><au>Ganguly, Debasis</au><au>Mitra, Mandar</au><au>Saha, Sanjoy Kumar</au><au>Jones, Gareth J.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Embedding Based IR Model for Disaster Situations</atitle><jtitle>Information systems frontiers</jtitle><stitle>Inf Syst Front</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>20</volume><issue>5</issue><spage>925</spage><epage>932</epage><pages>925-932</pages><issn>1387-3326</issn><eissn>1572-9419</eissn><abstract>Twitter (
http://twitter.com
) is one of the most popular social networking platforms. Twitter users can easily broadcast disaster-specific information, which, if effectively mined, can assist in relief operations. However, the brevity and informal nature of tweets pose a challenge to Information Retrieval (IR) researchers. In this paper, we successfully use word embedding techniques to improve ranking for ad-hoc queries on microblog data. Our experiments with the ‘Social Media for Emergency Relief and Preparedness’ (SMERP) dataset provided at an ECIR 2017 workshop show that these techniques outperform conventional term-matching based IR models. In addition, we show that, for the SMERP task, our word embedding based method is more effective if the embeddings are generated from the disaster specific SMERP data, than when they are trained on the large social media collection provided for the TREC (
http://trec.nist.gov/
) 2011 Microblog track dataset.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10796-018-9847-6</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-3326 |
ispartof | Information systems frontiers, 2018-10, Vol.20 (5), p.925-932 |
issn | 1387-3326 1572-9419 |
language | eng |
recordid | cdi_proquest_journals_2021754659 |
source | SpringerLink Journals |
subjects | Business and Management Control Digital media Disaster management Embedding Emergency management Emergency preparedness Information retrieval Information systems IT in Business Management of Computing and Information Systems Operations Research/Decision Theory Social networks Systems Theory |
title | An Embedding Based IR Model for Disaster Situations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Embedding%20Based%20IR%20Model%20for%20Disaster%20Situations&rft.jtitle=Information%20systems%20frontiers&rft.au=Bandyopadhyay,%20Ayan&rft.date=2018-10-01&rft.volume=20&rft.issue=5&rft.spage=925&rft.epage=932&rft.pages=925-932&rft.issn=1387-3326&rft.eissn=1572-9419&rft_id=info:doi/10.1007/s10796-018-9847-6&rft_dat=%3Cproquest_cross%3E2021754659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2021754659&rft_id=info:pmid/&rfr_iscdi=true |