An Embedding Based IR Model for Disaster Situations

Twitter ( http://twitter.com ) is one of the most popular social networking platforms. Twitter users can easily broadcast disaster-specific information, which, if effectively mined, can assist in relief operations. However, the brevity and informal nature of tweets pose a challenge to Information Re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information systems frontiers 2018-10, Vol.20 (5), p.925-932
Hauptverfasser: Bandyopadhyay, Ayan, Ganguly, Debasis, Mitra, Mandar, Saha, Sanjoy Kumar, Jones, Gareth J.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 932
container_issue 5
container_start_page 925
container_title Information systems frontiers
container_volume 20
creator Bandyopadhyay, Ayan
Ganguly, Debasis
Mitra, Mandar
Saha, Sanjoy Kumar
Jones, Gareth J.F.
description Twitter ( http://twitter.com ) is one of the most popular social networking platforms. Twitter users can easily broadcast disaster-specific information, which, if effectively mined, can assist in relief operations. However, the brevity and informal nature of tweets pose a challenge to Information Retrieval (IR) researchers. In this paper, we successfully use word embedding techniques to improve ranking for ad-hoc queries on microblog data. Our experiments with the ‘Social Media for Emergency Relief and Preparedness’ (SMERP) dataset provided at an ECIR 2017 workshop show that these techniques outperform conventional term-matching based IR models. In addition, we show that, for the SMERP task, our word embedding based method is more effective if the embeddings are generated from the disaster specific SMERP data, than when they are trained on the large social media collection provided for the TREC ( http://trec.nist.gov/ ) 2011 Microblog track dataset.
doi_str_mv 10.1007/s10796-018-9847-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2021754659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2021754659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2c14f459ca40bc193ebea9de2200ad6961d30080efaa0ae1da486c6ae728db123</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssTbM2IkdL0spUKkIicfacuJJlapNip0u-HtSBYkVq7mLe-5Ih7FrhFsEMHcJwVgtAAthi8wIfcImmBspbIb2dMiqMEIpqc_ZRUobANTS5BOmZi1f7EoKoWnX_N4nCnz5xl-6QFted5E_NMmnniJ_b_qD75uuTZfsrPbbRFe_d8o-Hxcf82exen1azmcrUSnUvZAVZnWW28pnUFZoFZXkbSApAXzQVmNQAAVQ7T14wuCzQlfak5FFKFGqKbsZd_ex-zpQ6t2mO8R2eOkkSDR5pnM7tHBsVbFLKVLt9rHZ-fjtENzRjRvduMGNO7pxemDkyKSh264p_i3_D_0AoSZlTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021754659</pqid></control><display><type>article</type><title>An Embedding Based IR Model for Disaster Situations</title><source>SpringerLink Journals</source><creator>Bandyopadhyay, Ayan ; Ganguly, Debasis ; Mitra, Mandar ; Saha, Sanjoy Kumar ; Jones, Gareth J.F.</creator><creatorcontrib>Bandyopadhyay, Ayan ; Ganguly, Debasis ; Mitra, Mandar ; Saha, Sanjoy Kumar ; Jones, Gareth J.F.</creatorcontrib><description>Twitter ( http://twitter.com ) is one of the most popular social networking platforms. Twitter users can easily broadcast disaster-specific information, which, if effectively mined, can assist in relief operations. However, the brevity and informal nature of tweets pose a challenge to Information Retrieval (IR) researchers. In this paper, we successfully use word embedding techniques to improve ranking for ad-hoc queries on microblog data. Our experiments with the ‘Social Media for Emergency Relief and Preparedness’ (SMERP) dataset provided at an ECIR 2017 workshop show that these techniques outperform conventional term-matching based IR models. In addition, we show that, for the SMERP task, our word embedding based method is more effective if the embeddings are generated from the disaster specific SMERP data, than when they are trained on the large social media collection provided for the TREC ( http://trec.nist.gov/ ) 2011 Microblog track dataset.</description><identifier>ISSN: 1387-3326</identifier><identifier>EISSN: 1572-9419</identifier><identifier>DOI: 10.1007/s10796-018-9847-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Business and Management ; Control ; Digital media ; Disaster management ; Embedding ; Emergency management ; Emergency preparedness ; Information retrieval ; Information systems ; IT in Business ; Management of Computing and Information Systems ; Operations Research/Decision Theory ; Social networks ; Systems Theory</subject><ispartof>Information systems frontiers, 2018-10, Vol.20 (5), p.925-932</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Information Systems Frontiers is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2c14f459ca40bc193ebea9de2200ad6961d30080efaa0ae1da486c6ae728db123</citedby><cites>FETCH-LOGICAL-c316t-2c14f459ca40bc193ebea9de2200ad6961d30080efaa0ae1da486c6ae728db123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10796-018-9847-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10796-018-9847-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bandyopadhyay, Ayan</creatorcontrib><creatorcontrib>Ganguly, Debasis</creatorcontrib><creatorcontrib>Mitra, Mandar</creatorcontrib><creatorcontrib>Saha, Sanjoy Kumar</creatorcontrib><creatorcontrib>Jones, Gareth J.F.</creatorcontrib><title>An Embedding Based IR Model for Disaster Situations</title><title>Information systems frontiers</title><addtitle>Inf Syst Front</addtitle><description>Twitter ( http://twitter.com ) is one of the most popular social networking platforms. Twitter users can easily broadcast disaster-specific information, which, if effectively mined, can assist in relief operations. However, the brevity and informal nature of tweets pose a challenge to Information Retrieval (IR) researchers. In this paper, we successfully use word embedding techniques to improve ranking for ad-hoc queries on microblog data. Our experiments with the ‘Social Media for Emergency Relief and Preparedness’ (SMERP) dataset provided at an ECIR 2017 workshop show that these techniques outperform conventional term-matching based IR models. In addition, we show that, for the SMERP task, our word embedding based method is more effective if the embeddings are generated from the disaster specific SMERP data, than when they are trained on the large social media collection provided for the TREC ( http://trec.nist.gov/ ) 2011 Microblog track dataset.</description><subject>Business and Management</subject><subject>Control</subject><subject>Digital media</subject><subject>Disaster management</subject><subject>Embedding</subject><subject>Emergency management</subject><subject>Emergency preparedness</subject><subject>Information retrieval</subject><subject>Information systems</subject><subject>IT in Business</subject><subject>Management of Computing and Information Systems</subject><subject>Operations Research/Decision Theory</subject><subject>Social networks</subject><subject>Systems Theory</subject><issn>1387-3326</issn><issn>1572-9419</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtOwzAQRS0EEqXwAewssTbM2IkdL0spUKkIicfacuJJlapNip0u-HtSBYkVq7mLe-5Ih7FrhFsEMHcJwVgtAAthi8wIfcImmBspbIb2dMiqMEIpqc_ZRUobANTS5BOmZi1f7EoKoWnX_N4nCnz5xl-6QFted5E_NMmnniJ_b_qD75uuTZfsrPbbRFe_d8o-Hxcf82exen1azmcrUSnUvZAVZnWW28pnUFZoFZXkbSApAXzQVmNQAAVQ7T14wuCzQlfak5FFKFGqKbsZd_ex-zpQ6t2mO8R2eOkkSDR5pnM7tHBsVbFLKVLt9rHZ-fjtENzRjRvduMGNO7pxemDkyKSh264p_i3_D_0AoSZlTg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Bandyopadhyay, Ayan</creator><creator>Ganguly, Debasis</creator><creator>Mitra, Mandar</creator><creator>Saha, Sanjoy Kumar</creator><creator>Jones, Gareth J.F.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20181001</creationdate><title>An Embedding Based IR Model for Disaster Situations</title><author>Bandyopadhyay, Ayan ; Ganguly, Debasis ; Mitra, Mandar ; Saha, Sanjoy Kumar ; Jones, Gareth J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2c14f459ca40bc193ebea9de2200ad6961d30080efaa0ae1da486c6ae728db123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Business and Management</topic><topic>Control</topic><topic>Digital media</topic><topic>Disaster management</topic><topic>Embedding</topic><topic>Emergency management</topic><topic>Emergency preparedness</topic><topic>Information retrieval</topic><topic>Information systems</topic><topic>IT in Business</topic><topic>Management of Computing and Information Systems</topic><topic>Operations Research/Decision Theory</topic><topic>Social networks</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandyopadhyay, Ayan</creatorcontrib><creatorcontrib>Ganguly, Debasis</creatorcontrib><creatorcontrib>Mitra, Mandar</creatorcontrib><creatorcontrib>Saha, Sanjoy Kumar</creatorcontrib><creatorcontrib>Jones, Gareth J.F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Information systems frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandyopadhyay, Ayan</au><au>Ganguly, Debasis</au><au>Mitra, Mandar</au><au>Saha, Sanjoy Kumar</au><au>Jones, Gareth J.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Embedding Based IR Model for Disaster Situations</atitle><jtitle>Information systems frontiers</jtitle><stitle>Inf Syst Front</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>20</volume><issue>5</issue><spage>925</spage><epage>932</epage><pages>925-932</pages><issn>1387-3326</issn><eissn>1572-9419</eissn><abstract>Twitter ( http://twitter.com ) is one of the most popular social networking platforms. Twitter users can easily broadcast disaster-specific information, which, if effectively mined, can assist in relief operations. However, the brevity and informal nature of tweets pose a challenge to Information Retrieval (IR) researchers. In this paper, we successfully use word embedding techniques to improve ranking for ad-hoc queries on microblog data. Our experiments with the ‘Social Media for Emergency Relief and Preparedness’ (SMERP) dataset provided at an ECIR 2017 workshop show that these techniques outperform conventional term-matching based IR models. In addition, we show that, for the SMERP task, our word embedding based method is more effective if the embeddings are generated from the disaster specific SMERP data, than when they are trained on the large social media collection provided for the TREC ( http://trec.nist.gov/ ) 2011 Microblog track dataset.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10796-018-9847-6</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1387-3326
ispartof Information systems frontiers, 2018-10, Vol.20 (5), p.925-932
issn 1387-3326
1572-9419
language eng
recordid cdi_proquest_journals_2021754659
source SpringerLink Journals
subjects Business and Management
Control
Digital media
Disaster management
Embedding
Emergency management
Emergency preparedness
Information retrieval
Information systems
IT in Business
Management of Computing and Information Systems
Operations Research/Decision Theory
Social networks
Systems Theory
title An Embedding Based IR Model for Disaster Situations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Embedding%20Based%20IR%20Model%20for%20Disaster%20Situations&rft.jtitle=Information%20systems%20frontiers&rft.au=Bandyopadhyay,%20Ayan&rft.date=2018-10-01&rft.volume=20&rft.issue=5&rft.spage=925&rft.epage=932&rft.pages=925-932&rft.issn=1387-3326&rft.eissn=1572-9419&rft_id=info:doi/10.1007/s10796-018-9847-6&rft_dat=%3Cproquest_cross%3E2021754659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2021754659&rft_id=info:pmid/&rfr_iscdi=true