Symmetry strategies for high performance lanthanide-based single-molecule magnets

Toward promising candidates of quantum information processing, the rapid development of lanthanide-based single-molecule magnets (Ln-SMMs) highlights design strategies in consideration of the local symmetry of lanthanide ions. In this review, crystal-field theory is employed to demonstrate the elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical Society reviews 2018-04, Vol.47 (7), p.2431-2453
Hauptverfasser: Liu, Jun-Liang, Chen, Yan-Cong, Tong, Ming-Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2453
container_issue 7
container_start_page 2431
container_title Chemical Society reviews
container_volume 47
creator Liu, Jun-Liang
Chen, Yan-Cong
Tong, Ming-Liang
description Toward promising candidates of quantum information processing, the rapid development of lanthanide-based single-molecule magnets (Ln-SMMs) highlights design strategies in consideration of the local symmetry of lanthanide ions. In this review, crystal-field theory is employed to demonstrate the electronic structures according to the semiquantitative electrostatic model. Then, specific symmetry elements are analysed for the elimination of transverse crystal fields and quantum tunnelling of magnetization (QTM). In this way, high-performance Ln-SMMs can be designed to enable extremely slow relaxation of magnetization, namely magnetic blocking; however, their practical magnetic characterization becomes increasingly challenging. Therefore, we will attempt to interpret the experimental behaviours and clarify some issues in detail. Finally, representative Ln-SMMs with specific local symmetries are summarized in combination with the discussion on the symmetry strategies, and some of the underlying questions are put forward. Based on crystal-field theory, design strategies in consideration of local symmetry are highlighted for lanthanide-based single-molecule magnets, accompanied by practical concerns about magnetic studies and representative cases.
doi_str_mv 10.1039/c7cs00266a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2021254674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2009567998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-4336fa8fd1badb8c428bef9bf78373a7d6590169bb6df3013fbc6c76a2ca61b83</originalsourceid><addsrcrecordid>eNpd0UtLw0AQB_BFFFurF-9KwIsI0X11N3sswRcURKrnsLuZTVPyqLvJod_e1NYKnmZgfgzDfxC6JPieYKYerLQBYyqEPkJjwgWOueT8GI0xwyLGmNAROgthNXRECnqKRlRxRXlCx-h9salr6PwmCp3XHRQlhMi1PlqWxTJagx_6WjcWoko33VI3ZQ6x0QHyKJRNUUFctxXYvoKo1kUDXThHJ05XAS72dYI-nx4_0pd4_vb8ms7mseWcdzFnTDiduJwYnZvEcpoYcMo4mTDJtMzFVGEilDEidwwT5owVVgpNrRbEJGyCbnd717796iF0WV0GC9VwJ7R9yCjGaiqkUlt684-u2t43w3WDooROuZB8UHc7ZX0bggeXrX1Za7_JCM62QWepTBc_Qc8GfL1f2Zsa8gP9TXYAVzvggz1M_z7FvgHe7IMB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021254674</pqid></control><display><type>article</type><title>Symmetry strategies for high performance lanthanide-based single-molecule magnets</title><source>Alma/SFX Local Collection</source><source>Royal Society of Chemistry E-Journals</source><creator>Liu, Jun-Liang ; Chen, Yan-Cong ; Tong, Ming-Liang</creator><creatorcontrib>Liu, Jun-Liang ; Chen, Yan-Cong ; Tong, Ming-Liang</creatorcontrib><description>Toward promising candidates of quantum information processing, the rapid development of lanthanide-based single-molecule magnets (Ln-SMMs) highlights design strategies in consideration of the local symmetry of lanthanide ions. In this review, crystal-field theory is employed to demonstrate the electronic structures according to the semiquantitative electrostatic model. Then, specific symmetry elements are analysed for the elimination of transverse crystal fields and quantum tunnelling of magnetization (QTM). In this way, high-performance Ln-SMMs can be designed to enable extremely slow relaxation of magnetization, namely magnetic blocking; however, their practical magnetic characterization becomes increasingly challenging. Therefore, we will attempt to interpret the experimental behaviours and clarify some issues in detail. Finally, representative Ln-SMMs with specific local symmetries are summarized in combination with the discussion on the symmetry strategies, and some of the underlying questions are put forward. Based on crystal-field theory, design strategies in consideration of local symmetry are highlighted for lanthanide-based single-molecule magnets, accompanied by practical concerns about magnetic studies and representative cases.</description><identifier>ISSN: 0306-0012</identifier><identifier>EISSN: 1460-4744</identifier><identifier>DOI: 10.1039/c7cs00266a</identifier><identifier>PMID: 29492482</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Crystal field theory ; Crystal structure ; Data processing ; Magnetic induction ; Magnetic properties ; Magnetization ; Magnets ; Quantum phenomena ; Quantum theory ; Quantum tunnelling ; Symmetry</subject><ispartof>Chemical Society reviews, 2018-04, Vol.47 (7), p.2431-2453</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-4336fa8fd1badb8c428bef9bf78373a7d6590169bb6df3013fbc6c76a2ca61b83</citedby><cites>FETCH-LOGICAL-c444t-4336fa8fd1badb8c428bef9bf78373a7d6590169bb6df3013fbc6c76a2ca61b83</cites><orcidid>0000-0001-5047-3445 ; 0000-0002-5811-6300 ; 0000-0003-4725-0798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29492482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jun-Liang</creatorcontrib><creatorcontrib>Chen, Yan-Cong</creatorcontrib><creatorcontrib>Tong, Ming-Liang</creatorcontrib><title>Symmetry strategies for high performance lanthanide-based single-molecule magnets</title><title>Chemical Society reviews</title><addtitle>Chem Soc Rev</addtitle><description>Toward promising candidates of quantum information processing, the rapid development of lanthanide-based single-molecule magnets (Ln-SMMs) highlights design strategies in consideration of the local symmetry of lanthanide ions. In this review, crystal-field theory is employed to demonstrate the electronic structures according to the semiquantitative electrostatic model. Then, specific symmetry elements are analysed for the elimination of transverse crystal fields and quantum tunnelling of magnetization (QTM). In this way, high-performance Ln-SMMs can be designed to enable extremely slow relaxation of magnetization, namely magnetic blocking; however, their practical magnetic characterization becomes increasingly challenging. Therefore, we will attempt to interpret the experimental behaviours and clarify some issues in detail. Finally, representative Ln-SMMs with specific local symmetries are summarized in combination with the discussion on the symmetry strategies, and some of the underlying questions are put forward. Based on crystal-field theory, design strategies in consideration of local symmetry are highlighted for lanthanide-based single-molecule magnets, accompanied by practical concerns about magnetic studies and representative cases.</description><subject>Crystal field theory</subject><subject>Crystal structure</subject><subject>Data processing</subject><subject>Magnetic induction</subject><subject>Magnetic properties</subject><subject>Magnetization</subject><subject>Magnets</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>Quantum tunnelling</subject><subject>Symmetry</subject><issn>0306-0012</issn><issn>1460-4744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLw0AQB_BFFFurF-9KwIsI0X11N3sswRcURKrnsLuZTVPyqLvJod_e1NYKnmZgfgzDfxC6JPieYKYerLQBYyqEPkJjwgWOueT8GI0xwyLGmNAROgthNXRECnqKRlRxRXlCx-h9salr6PwmCp3XHRQlhMi1PlqWxTJagx_6WjcWoko33VI3ZQ6x0QHyKJRNUUFctxXYvoKo1kUDXThHJ05XAS72dYI-nx4_0pd4_vb8ms7mseWcdzFnTDiduJwYnZvEcpoYcMo4mTDJtMzFVGEilDEidwwT5owVVgpNrRbEJGyCbnd717796iF0WV0GC9VwJ7R9yCjGaiqkUlt684-u2t43w3WDooROuZB8UHc7ZX0bggeXrX1Za7_JCM62QWepTBc_Qc8GfL1f2Zsa8gP9TXYAVzvggz1M_z7FvgHe7IMB</recordid><startdate>20180403</startdate><enddate>20180403</enddate><creator>Liu, Jun-Liang</creator><creator>Chen, Yan-Cong</creator><creator>Tong, Ming-Liang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5047-3445</orcidid><orcidid>https://orcid.org/0000-0002-5811-6300</orcidid><orcidid>https://orcid.org/0000-0003-4725-0798</orcidid></search><sort><creationdate>20180403</creationdate><title>Symmetry strategies for high performance lanthanide-based single-molecule magnets</title><author>Liu, Jun-Liang ; Chen, Yan-Cong ; Tong, Ming-Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-4336fa8fd1badb8c428bef9bf78373a7d6590169bb6df3013fbc6c76a2ca61b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Crystal field theory</topic><topic>Crystal structure</topic><topic>Data processing</topic><topic>Magnetic induction</topic><topic>Magnetic properties</topic><topic>Magnetization</topic><topic>Magnets</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>Quantum tunnelling</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jun-Liang</creatorcontrib><creatorcontrib>Chen, Yan-Cong</creatorcontrib><creatorcontrib>Tong, Ming-Liang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical Society reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jun-Liang</au><au>Chen, Yan-Cong</au><au>Tong, Ming-Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry strategies for high performance lanthanide-based single-molecule magnets</atitle><jtitle>Chemical Society reviews</jtitle><addtitle>Chem Soc Rev</addtitle><date>2018-04-03</date><risdate>2018</risdate><volume>47</volume><issue>7</issue><spage>2431</spage><epage>2453</epage><pages>2431-2453</pages><issn>0306-0012</issn><eissn>1460-4744</eissn><abstract>Toward promising candidates of quantum information processing, the rapid development of lanthanide-based single-molecule magnets (Ln-SMMs) highlights design strategies in consideration of the local symmetry of lanthanide ions. In this review, crystal-field theory is employed to demonstrate the electronic structures according to the semiquantitative electrostatic model. Then, specific symmetry elements are analysed for the elimination of transverse crystal fields and quantum tunnelling of magnetization (QTM). In this way, high-performance Ln-SMMs can be designed to enable extremely slow relaxation of magnetization, namely magnetic blocking; however, their practical magnetic characterization becomes increasingly challenging. Therefore, we will attempt to interpret the experimental behaviours and clarify some issues in detail. Finally, representative Ln-SMMs with specific local symmetries are summarized in combination with the discussion on the symmetry strategies, and some of the underlying questions are put forward. Based on crystal-field theory, design strategies in consideration of local symmetry are highlighted for lanthanide-based single-molecule magnets, accompanied by practical concerns about magnetic studies and representative cases.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29492482</pmid><doi>10.1039/c7cs00266a</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-5047-3445</orcidid><orcidid>https://orcid.org/0000-0002-5811-6300</orcidid><orcidid>https://orcid.org/0000-0003-4725-0798</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-0012
ispartof Chemical Society reviews, 2018-04, Vol.47 (7), p.2431-2453
issn 0306-0012
1460-4744
language eng
recordid cdi_proquest_journals_2021254674
source Alma/SFX Local Collection; Royal Society of Chemistry E-Journals
subjects Crystal field theory
Crystal structure
Data processing
Magnetic induction
Magnetic properties
Magnetization
Magnets
Quantum phenomena
Quantum theory
Quantum tunnelling
Symmetry
title Symmetry strategies for high performance lanthanide-based single-molecule magnets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20strategies%20for%20high%20performance%20lanthanide-based%20single-molecule%20magnets&rft.jtitle=Chemical%20Society%20reviews&rft.au=Liu,%20Jun-Liang&rft.date=2018-04-03&rft.volume=47&rft.issue=7&rft.spage=2431&rft.epage=2453&rft.pages=2431-2453&rft.issn=0306-0012&rft.eissn=1460-4744&rft_id=info:doi/10.1039/c7cs00266a&rft_dat=%3Cproquest_pubme%3E2009567998%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2021254674&rft_id=info:pmid/29492482&rfr_iscdi=true