The global overlap of bioenergy and carbon sequestration potential
Bioenergy with carbon capture and storage (BECCS) is a negative emissions technology that is a largely untested but prominent feature of ambitious climate change mitigation scenarios. This strategy involves capturing carbon dioxide (CO 2 ) from stationary bioenergy facilities and sequestering it in...
Gespeichert in:
Veröffentlicht in: | Climatic change 2018-05, Vol.148 (1-2), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1-2 |
container_start_page | 1 |
container_title | Climatic change |
container_volume | 148 |
creator | Turner, P. A. Mach, K. J. Lobell, D. B. Benson, S. M. Baik, E. Sanchez, D. L. Field, C. B. |
description | Bioenergy with carbon capture and storage (BECCS) is a negative emissions technology that is a largely untested but prominent feature of ambitious climate change mitigation scenarios. This strategy involves capturing carbon dioxide (CO
2
) from stationary bioenergy facilities and sequestering it in suitable geological formations, effectively removing CO
2
from the atmosphere. Many factors potentially limit BECCS deployment including obstacles to building pipeline networks that move large quantities of liquefied CO
2
over long distances. Here, we examine the BECCS opportunity that exists in regions overlapping storage basins. Under current conditions, the equivalent of 22.9 GtCO
2
y
−1
of net primary production (NPP), a measure of biomass growth, overlies highly prospective CO
2
storage basins, representing a sustainably harvestable total of approximately 7.6 GtCO
2
y
−1
. Most land overlying basins is either forested or linked to food production. If only marginal agricultural lands, those inconsistently under agricultural production, are used to source biomass, the scale of the available resource is approximately 1 GtCO
2
y
−1
. If transportation of biomass or CO
2
is constrained, and if BECCS is not developed on forests or prime croplands, then BECCS deployments will be limited to a small, but meaningful fraction (~10%) of the levels typical in cost-optimized model trajectories that stabilize warming at 2 °C or less above pre-industrial temperatures. Marginal agricultural lands over storage basins can be an entry point for maturing the engineering technologies and financial markets needed for BECCS. |
doi_str_mv | 10.1007/s10584-018-2189-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2021167074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2021167074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-3ad2963daf2f636c9640eb6c010835b2e0b2111b630d6367081ecdc98043dc5e3</originalsourceid><addsrcrecordid>eNp1kEFPwzAMhSMEEmPwA7hV4hywkzZNjzDBQJrEZZyjJE1Hp9KUpEPafj0ZReLEybb8vmfrEXKNcIsA5V1EKGROASVlKCt6OCEzLEpOMZdwSmaAoqAAUJ2Tixi3x65kYkYe1u8u23Te6C7zXy50esh8k5nWu96FzT7TfZ1ZHYzvs-g-dy6OQY9tmgY_un5sdXdJzhrdRXf1W-fk7elxvXimq9fly-J-RW3OipFyXbNK8Fo3rBFc2Erk4IywgCB5YZgDwxDRCA512pcg0dnaVhJyXtvC8Tm5mXyH4H8eUVu_C306qRgkNCFlnlQ4qWzwMQbXqCG0HzrsFYI6RqWmqFSKSh2jUofEsImJSdtvXPhz_h_6Bh6va9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021167074</pqid></control><display><type>article</type><title>The global overlap of bioenergy and carbon sequestration potential</title><source>SpringerLink Journals</source><creator>Turner, P. A. ; Mach, K. J. ; Lobell, D. B. ; Benson, S. M. ; Baik, E. ; Sanchez, D. L. ; Field, C. B.</creator><creatorcontrib>Turner, P. A. ; Mach, K. J. ; Lobell, D. B. ; Benson, S. M. ; Baik, E. ; Sanchez, D. L. ; Field, C. B.</creatorcontrib><description>Bioenergy with carbon capture and storage (BECCS) is a negative emissions technology that is a largely untested but prominent feature of ambitious climate change mitigation scenarios. This strategy involves capturing carbon dioxide (CO
2
) from stationary bioenergy facilities and sequestering it in suitable geological formations, effectively removing CO
2
from the atmosphere. Many factors potentially limit BECCS deployment including obstacles to building pipeline networks that move large quantities of liquefied CO
2
over long distances. Here, we examine the BECCS opportunity that exists in regions overlapping storage basins. Under current conditions, the equivalent of 22.9 GtCO
2
y
−1
of net primary production (NPP), a measure of biomass growth, overlies highly prospective CO
2
storage basins, representing a sustainably harvestable total of approximately 7.6 GtCO
2
y
−1
. Most land overlying basins is either forested or linked to food production. If only marginal agricultural lands, those inconsistently under agricultural production, are used to source biomass, the scale of the available resource is approximately 1 GtCO
2
y
−1
. If transportation of biomass or CO
2
is constrained, and if BECCS is not developed on forests or prime croplands, then BECCS deployments will be limited to a small, but meaningful fraction (~10%) of the levels typical in cost-optimized model trajectories that stabilize warming at 2 °C or less above pre-industrial temperatures. Marginal agricultural lands over storage basins can be an entry point for maturing the engineering technologies and financial markets needed for BECCS.</description><identifier>ISSN: 0165-0009</identifier><identifier>EISSN: 1573-1480</identifier><identifier>DOI: 10.1007/s10584-018-2189-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agricultural land ; Agricultural production ; Atmospheric Sciences ; Basins ; Biomass ; Carbon ; Carbon capture and storage ; Carbon dioxide ; Carbon sequestration ; Climate change ; Climate change mitigation ; Climate Change/Climate Change Impacts ; Deployment ; Earth and Environmental Science ; Earth Sciences ; Food production ; Forests ; Mitigation ; Primary production ; Renewable energy ; Sequestering ; Submarine pipelines ; Trajectory optimization</subject><ispartof>Climatic change, 2018-05, Vol.148 (1-2), p.1-10</ispartof><rights>The Author(s) 2018</rights><rights>Climatic Change is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-3ad2963daf2f636c9640eb6c010835b2e0b2111b630d6367081ecdc98043dc5e3</citedby><cites>FETCH-LOGICAL-c425t-3ad2963daf2f636c9640eb6c010835b2e0b2111b630d6367081ecdc98043dc5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10584-018-2189-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10584-018-2189-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Turner, P. A.</creatorcontrib><creatorcontrib>Mach, K. J.</creatorcontrib><creatorcontrib>Lobell, D. B.</creatorcontrib><creatorcontrib>Benson, S. M.</creatorcontrib><creatorcontrib>Baik, E.</creatorcontrib><creatorcontrib>Sanchez, D. L.</creatorcontrib><creatorcontrib>Field, C. B.</creatorcontrib><title>The global overlap of bioenergy and carbon sequestration potential</title><title>Climatic change</title><addtitle>Climatic Change</addtitle><description>Bioenergy with carbon capture and storage (BECCS) is a negative emissions technology that is a largely untested but prominent feature of ambitious climate change mitigation scenarios. This strategy involves capturing carbon dioxide (CO
2
) from stationary bioenergy facilities and sequestering it in suitable geological formations, effectively removing CO
2
from the atmosphere. Many factors potentially limit BECCS deployment including obstacles to building pipeline networks that move large quantities of liquefied CO
2
over long distances. Here, we examine the BECCS opportunity that exists in regions overlapping storage basins. Under current conditions, the equivalent of 22.9 GtCO
2
y
−1
of net primary production (NPP), a measure of biomass growth, overlies highly prospective CO
2
storage basins, representing a sustainably harvestable total of approximately 7.6 GtCO
2
y
−1
. Most land overlying basins is either forested or linked to food production. If only marginal agricultural lands, those inconsistently under agricultural production, are used to source biomass, the scale of the available resource is approximately 1 GtCO
2
y
−1
. If transportation of biomass or CO
2
is constrained, and if BECCS is not developed on forests or prime croplands, then BECCS deployments will be limited to a small, but meaningful fraction (~10%) of the levels typical in cost-optimized model trajectories that stabilize warming at 2 °C or less above pre-industrial temperatures. Marginal agricultural lands over storage basins can be an entry point for maturing the engineering technologies and financial markets needed for BECCS.</description><subject>Agricultural land</subject><subject>Agricultural production</subject><subject>Atmospheric Sciences</subject><subject>Basins</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carbon capture and storage</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Climate change</subject><subject>Climate change mitigation</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Deployment</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Food production</subject><subject>Forests</subject><subject>Mitigation</subject><subject>Primary production</subject><subject>Renewable energy</subject><subject>Sequestering</subject><subject>Submarine pipelines</subject><subject>Trajectory optimization</subject><issn>0165-0009</issn><issn>1573-1480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEFPwzAMhSMEEmPwA7hV4hywkzZNjzDBQJrEZZyjJE1Hp9KUpEPafj0ZReLEybb8vmfrEXKNcIsA5V1EKGROASVlKCt6OCEzLEpOMZdwSmaAoqAAUJ2Tixi3x65kYkYe1u8u23Te6C7zXy50esh8k5nWu96FzT7TfZ1ZHYzvs-g-dy6OQY9tmgY_un5sdXdJzhrdRXf1W-fk7elxvXimq9fly-J-RW3OipFyXbNK8Fo3rBFc2Erk4IywgCB5YZgDwxDRCA512pcg0dnaVhJyXtvC8Tm5mXyH4H8eUVu_C306qRgkNCFlnlQ4qWzwMQbXqCG0HzrsFYI6RqWmqFSKSh2jUofEsImJSdtvXPhz_h_6Bh6va9U</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Turner, P. A.</creator><creator>Mach, K. J.</creator><creator>Lobell, D. B.</creator><creator>Benson, S. M.</creator><creator>Baik, E.</creator><creator>Sanchez, D. L.</creator><creator>Field, C. B.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KL.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>SOI</scope></search><sort><creationdate>20180501</creationdate><title>The global overlap of bioenergy and carbon sequestration potential</title><author>Turner, P. A. ; Mach, K. J. ; Lobell, D. B. ; Benson, S. M. ; Baik, E. ; Sanchez, D. L. ; Field, C. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-3ad2963daf2f636c9640eb6c010835b2e0b2111b630d6367081ecdc98043dc5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agricultural land</topic><topic>Agricultural production</topic><topic>Atmospheric Sciences</topic><topic>Basins</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carbon capture and storage</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Climate change</topic><topic>Climate change mitigation</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Deployment</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Food production</topic><topic>Forests</topic><topic>Mitigation</topic><topic>Primary production</topic><topic>Renewable energy</topic><topic>Sequestering</topic><topic>Submarine pipelines</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turner, P. A.</creatorcontrib><creatorcontrib>Mach, K. J.</creatorcontrib><creatorcontrib>Lobell, D. B.</creatorcontrib><creatorcontrib>Benson, S. M.</creatorcontrib><creatorcontrib>Baik, E.</creatorcontrib><creatorcontrib>Sanchez, D. L.</creatorcontrib><creatorcontrib>Field, C. B.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Environment Abstracts</collection><jtitle>Climatic change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turner, P. A.</au><au>Mach, K. J.</au><au>Lobell, D. B.</au><au>Benson, S. M.</au><au>Baik, E.</au><au>Sanchez, D. L.</au><au>Field, C. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The global overlap of bioenergy and carbon sequestration potential</atitle><jtitle>Climatic change</jtitle><stitle>Climatic Change</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>148</volume><issue>1-2</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0165-0009</issn><eissn>1573-1480</eissn><abstract>Bioenergy with carbon capture and storage (BECCS) is a negative emissions technology that is a largely untested but prominent feature of ambitious climate change mitigation scenarios. This strategy involves capturing carbon dioxide (CO
2
) from stationary bioenergy facilities and sequestering it in suitable geological formations, effectively removing CO
2
from the atmosphere. Many factors potentially limit BECCS deployment including obstacles to building pipeline networks that move large quantities of liquefied CO
2
over long distances. Here, we examine the BECCS opportunity that exists in regions overlapping storage basins. Under current conditions, the equivalent of 22.9 GtCO
2
y
−1
of net primary production (NPP), a measure of biomass growth, overlies highly prospective CO
2
storage basins, representing a sustainably harvestable total of approximately 7.6 GtCO
2
y
−1
. Most land overlying basins is either forested or linked to food production. If only marginal agricultural lands, those inconsistently under agricultural production, are used to source biomass, the scale of the available resource is approximately 1 GtCO
2
y
−1
. If transportation of biomass or CO
2
is constrained, and if BECCS is not developed on forests or prime croplands, then BECCS deployments will be limited to a small, but meaningful fraction (~10%) of the levels typical in cost-optimized model trajectories that stabilize warming at 2 °C or less above pre-industrial temperatures. Marginal agricultural lands over storage basins can be an entry point for maturing the engineering technologies and financial markets needed for BECCS.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10584-018-2189-z</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0009 |
ispartof | Climatic change, 2018-05, Vol.148 (1-2), p.1-10 |
issn | 0165-0009 1573-1480 |
language | eng |
recordid | cdi_proquest_journals_2021167074 |
source | SpringerLink Journals |
subjects | Agricultural land Agricultural production Atmospheric Sciences Basins Biomass Carbon Carbon capture and storage Carbon dioxide Carbon sequestration Climate change Climate change mitigation Climate Change/Climate Change Impacts Deployment Earth and Environmental Science Earth Sciences Food production Forests Mitigation Primary production Renewable energy Sequestering Submarine pipelines Trajectory optimization |
title | The global overlap of bioenergy and carbon sequestration potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20global%20overlap%20of%20bioenergy%20and%20carbon%20sequestration%20potential&rft.jtitle=Climatic%20change&rft.au=Turner,%20P.%20A.&rft.date=2018-05-01&rft.volume=148&rft.issue=1-2&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0165-0009&rft.eissn=1573-1480&rft_id=info:doi/10.1007/s10584-018-2189-z&rft_dat=%3Cproquest_cross%3E2021167074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2021167074&rft_id=info:pmid/&rfr_iscdi=true |