Suppression of magnetorotational instability in viscous resistive magnetized Taylor–Couette flow

Magnetorotational instability (MRI) is an instability that is responsible for accretion, the phenomenon observed in astrophysical disks, for example around black holes. MRI can be modeled using the equations of MHD. A typical linear analysis in the past made use of the small Prandtl number approxima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2018-04, Vol.69 (2), p.1-11, Article 49
Hauptverfasser: Eckhardt, Daniel Q., Herron, Isom H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2
container_start_page 1
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 69
creator Eckhardt, Daniel Q.
Herron, Isom H.
description Magnetorotational instability (MRI) is an instability that is responsible for accretion, the phenomenon observed in astrophysical disks, for example around black holes. MRI can be modeled using the equations of MHD. A typical linear analysis in the past made use of the small Prandtl number approximation, which results in dropping one term from these equations. Previously, one of the authors (Herron) showed that the small magnetic Prandtl number approximation suppresses MRI in axisymmetric viscous resistive magnetized Taylor–Couette flow when one has no-slip velocity boundary conditions, and insulating magnetic boundary conditions. We follow up here with a proof that MRI is still suppressed with perfectly conducting magnetic boundary conditions on the cylinders.
doi_str_mv 10.1007/s00033-018-0943-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2020990382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020990382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a5804a110a5f12cdc278e078e89bd46e79ee2d58ffa1b5c8f1a37ab16e1b7d9f3</originalsourceid><addsrcrecordid>eNp1kM9KAzEQh4MoWKsP4G3Bc3SS7HazRyn-g4IH6zlkdyclZbtZk2ylnnwH39AnMaWCJw_DDMPvG5iPkEsG1wygvAkAIAQFJilUuaDyiExYzoFWIKpjMgHIc8p5WZySsxDWKV0yEBNSv4zD4DEE6_rMmWyjVz1G513UMa10l9k-RF3bzsZdmrOtDY0bQ5YYG6Ld4i9iP7DNlnrXOf_9-TV3I8aImenc-zk5MboLePHbp-T1_m45f6SL54en-e2CNoLNItWFhFwzBrowjDdtw0uJkEpWdZvPsKwQeVtIYzSri0YapkWpazZDVpdtZcSUXB3uDt69jRiiWrvRpxeC4sChSiYkTyl2SDXeheDRqMHbjfY7xUDtVaqDSpVUqr1KJRPDD0xI2X6F_u_y_9AP-4l6YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020990382</pqid></control><display><type>article</type><title>Suppression of magnetorotational instability in viscous resistive magnetized Taylor–Couette flow</title><source>SpringerLink Journals</source><creator>Eckhardt, Daniel Q. ; Herron, Isom H.</creator><creatorcontrib>Eckhardt, Daniel Q. ; Herron, Isom H.</creatorcontrib><description>Magnetorotational instability (MRI) is an instability that is responsible for accretion, the phenomenon observed in astrophysical disks, for example around black holes. MRI can be modeled using the equations of MHD. A typical linear analysis in the past made use of the small Prandtl number approximation, which results in dropping one term from these equations. Previously, one of the authors (Herron) showed that the small magnetic Prandtl number approximation suppresses MRI in axisymmetric viscous resistive magnetized Taylor–Couette flow when one has no-slip velocity boundary conditions, and insulating magnetic boundary conditions. We follow up here with a proof that MRI is still suppressed with perfectly conducting magnetic boundary conditions on the cylinders.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-018-0943-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accretion disks ; Approximation ; Axisymmetric flow ; Black holes ; Boundary conditions ; Couette flow ; Cylinders ; Deposition ; Engineering ; Flow stability ; Linear analysis ; Magnetic fields ; Magnetohydrodynamics ; Mathematical analysis ; Mathematical Methods in Physics ; Prandtl number ; Slip velocity ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2018-04, Vol.69 (2), p.1-11, Article 49</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a5804a110a5f12cdc278e078e89bd46e79ee2d58ffa1b5c8f1a37ab16e1b7d9f3</citedby><cites>FETCH-LOGICAL-c316t-a5804a110a5f12cdc278e078e89bd46e79ee2d58ffa1b5c8f1a37ab16e1b7d9f3</cites><orcidid>0000-0002-8172-0899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-018-0943-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-018-0943-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Eckhardt, Daniel Q.</creatorcontrib><creatorcontrib>Herron, Isom H.</creatorcontrib><title>Suppression of magnetorotational instability in viscous resistive magnetized Taylor–Couette flow</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>Magnetorotational instability (MRI) is an instability that is responsible for accretion, the phenomenon observed in astrophysical disks, for example around black holes. MRI can be modeled using the equations of MHD. A typical linear analysis in the past made use of the small Prandtl number approximation, which results in dropping one term from these equations. Previously, one of the authors (Herron) showed that the small magnetic Prandtl number approximation suppresses MRI in axisymmetric viscous resistive magnetized Taylor–Couette flow when one has no-slip velocity boundary conditions, and insulating magnetic boundary conditions. We follow up here with a proof that MRI is still suppressed with perfectly conducting magnetic boundary conditions on the cylinders.</description><subject>Accretion disks</subject><subject>Approximation</subject><subject>Axisymmetric flow</subject><subject>Black holes</subject><subject>Boundary conditions</subject><subject>Couette flow</subject><subject>Cylinders</subject><subject>Deposition</subject><subject>Engineering</subject><subject>Flow stability</subject><subject>Linear analysis</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Prandtl number</subject><subject>Slip velocity</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQh4MoWKsP4G3Bc3SS7HazRyn-g4IH6zlkdyclZbtZk2ylnnwH39AnMaWCJw_DDMPvG5iPkEsG1wygvAkAIAQFJilUuaDyiExYzoFWIKpjMgHIc8p5WZySsxDWKV0yEBNSv4zD4DEE6_rMmWyjVz1G513UMa10l9k-RF3bzsZdmrOtDY0bQ5YYG6Ld4i9iP7DNlnrXOf_9-TV3I8aImenc-zk5MboLePHbp-T1_m45f6SL54en-e2CNoLNItWFhFwzBrowjDdtw0uJkEpWdZvPsKwQeVtIYzSri0YapkWpazZDVpdtZcSUXB3uDt69jRiiWrvRpxeC4sChSiYkTyl2SDXeheDRqMHbjfY7xUDtVaqDSpVUqr1KJRPDD0xI2X6F_u_y_9AP-4l6YQ</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Eckhardt, Daniel Q.</creator><creator>Herron, Isom H.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8172-0899</orcidid></search><sort><creationdate>20180401</creationdate><title>Suppression of magnetorotational instability in viscous resistive magnetized Taylor–Couette flow</title><author>Eckhardt, Daniel Q. ; Herron, Isom H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a5804a110a5f12cdc278e078e89bd46e79ee2d58ffa1b5c8f1a37ab16e1b7d9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accretion disks</topic><topic>Approximation</topic><topic>Axisymmetric flow</topic><topic>Black holes</topic><topic>Boundary conditions</topic><topic>Couette flow</topic><topic>Cylinders</topic><topic>Deposition</topic><topic>Engineering</topic><topic>Flow stability</topic><topic>Linear analysis</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Prandtl number</topic><topic>Slip velocity</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eckhardt, Daniel Q.</creatorcontrib><creatorcontrib>Herron, Isom H.</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eckhardt, Daniel Q.</au><au>Herron, Isom H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppression of magnetorotational instability in viscous resistive magnetized Taylor–Couette flow</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>69</volume><issue>2</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>49</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>Magnetorotational instability (MRI) is an instability that is responsible for accretion, the phenomenon observed in astrophysical disks, for example around black holes. MRI can be modeled using the equations of MHD. A typical linear analysis in the past made use of the small Prandtl number approximation, which results in dropping one term from these equations. Previously, one of the authors (Herron) showed that the small magnetic Prandtl number approximation suppresses MRI in axisymmetric viscous resistive magnetized Taylor–Couette flow when one has no-slip velocity boundary conditions, and insulating magnetic boundary conditions. We follow up here with a proof that MRI is still suppressed with perfectly conducting magnetic boundary conditions on the cylinders.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-018-0943-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8172-0899</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2018-04, Vol.69 (2), p.1-11, Article 49
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_journals_2020990382
source SpringerLink Journals
subjects Accretion disks
Approximation
Axisymmetric flow
Black holes
Boundary conditions
Couette flow
Cylinders
Deposition
Engineering
Flow stability
Linear analysis
Magnetic fields
Magnetohydrodynamics
Mathematical analysis
Mathematical Methods in Physics
Prandtl number
Slip velocity
Theoretical and Applied Mechanics
title Suppression of magnetorotational instability in viscous resistive magnetized Taylor–Couette flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppression%20of%20magnetorotational%20instability%20in%20viscous%20resistive%20magnetized%20Taylor%E2%80%93Couette%20flow&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Eckhardt,%20Daniel%20Q.&rft.date=2018-04-01&rft.volume=69&rft.issue=2&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=49&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-018-0943-8&rft_dat=%3Cproquest_cross%3E2020990382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020990382&rft_id=info:pmid/&rfr_iscdi=true