Suppression of magnetorotational instability in viscous resistive magnetized Taylor–Couette flow
Magnetorotational instability (MRI) is an instability that is responsible for accretion, the phenomenon observed in astrophysical disks, for example around black holes. MRI can be modeled using the equations of MHD. A typical linear analysis in the past made use of the small Prandtl number approxima...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2018-04, Vol.69 (2), p.1-11, Article 49 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 69 |
creator | Eckhardt, Daniel Q. Herron, Isom H. |
description | Magnetorotational instability (MRI) is an instability that is responsible for accretion, the phenomenon observed in astrophysical disks, for example around black holes. MRI can be modeled using the equations of MHD. A typical linear analysis in the past made use of the small Prandtl number approximation, which results in dropping one term from these equations. Previously, one of the authors (Herron) showed that the small magnetic Prandtl number approximation suppresses MRI in axisymmetric viscous resistive magnetized Taylor–Couette flow when one has no-slip velocity boundary conditions, and insulating magnetic boundary conditions. We follow up here with a proof that MRI is still suppressed with perfectly conducting magnetic boundary conditions on the cylinders. |
doi_str_mv | 10.1007/s00033-018-0943-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2020990382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020990382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a5804a110a5f12cdc278e078e89bd46e79ee2d58ffa1b5c8f1a37ab16e1b7d9f3</originalsourceid><addsrcrecordid>eNp1kM9KAzEQh4MoWKsP4G3Bc3SS7HazRyn-g4IH6zlkdyclZbtZk2ylnnwH39AnMaWCJw_DDMPvG5iPkEsG1wygvAkAIAQFJilUuaDyiExYzoFWIKpjMgHIc8p5WZySsxDWKV0yEBNSv4zD4DEE6_rMmWyjVz1G513UMa10l9k-RF3bzsZdmrOtDY0bQ5YYG6Ld4i9iP7DNlnrXOf_9-TV3I8aImenc-zk5MboLePHbp-T1_m45f6SL54en-e2CNoLNItWFhFwzBrowjDdtw0uJkEpWdZvPsKwQeVtIYzSri0YapkWpazZDVpdtZcSUXB3uDt69jRiiWrvRpxeC4sChSiYkTyl2SDXeheDRqMHbjfY7xUDtVaqDSpVUqr1KJRPDD0xI2X6F_u_y_9AP-4l6YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020990382</pqid></control><display><type>article</type><title>Suppression of magnetorotational instability in viscous resistive magnetized Taylor–Couette flow</title><source>SpringerLink Journals</source><creator>Eckhardt, Daniel Q. ; Herron, Isom H.</creator><creatorcontrib>Eckhardt, Daniel Q. ; Herron, Isom H.</creatorcontrib><description>Magnetorotational instability (MRI) is an instability that is responsible for accretion, the phenomenon observed in astrophysical disks, for example around black holes. MRI can be modeled using the equations of MHD. A typical linear analysis in the past made use of the small Prandtl number approximation, which results in dropping one term from these equations. Previously, one of the authors (Herron) showed that the small magnetic Prandtl number approximation suppresses MRI in axisymmetric viscous resistive magnetized Taylor–Couette flow when one has no-slip velocity boundary conditions, and insulating magnetic boundary conditions. We follow up here with a proof that MRI is still suppressed with perfectly conducting magnetic boundary conditions on the cylinders.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-018-0943-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accretion disks ; Approximation ; Axisymmetric flow ; Black holes ; Boundary conditions ; Couette flow ; Cylinders ; Deposition ; Engineering ; Flow stability ; Linear analysis ; Magnetic fields ; Magnetohydrodynamics ; Mathematical analysis ; Mathematical Methods in Physics ; Prandtl number ; Slip velocity ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2018-04, Vol.69 (2), p.1-11, Article 49</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a5804a110a5f12cdc278e078e89bd46e79ee2d58ffa1b5c8f1a37ab16e1b7d9f3</citedby><cites>FETCH-LOGICAL-c316t-a5804a110a5f12cdc278e078e89bd46e79ee2d58ffa1b5c8f1a37ab16e1b7d9f3</cites><orcidid>0000-0002-8172-0899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-018-0943-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-018-0943-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Eckhardt, Daniel Q.</creatorcontrib><creatorcontrib>Herron, Isom H.</creatorcontrib><title>Suppression of magnetorotational instability in viscous resistive magnetized Taylor–Couette flow</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>Magnetorotational instability (MRI) is an instability that is responsible for accretion, the phenomenon observed in astrophysical disks, for example around black holes. MRI can be modeled using the equations of MHD. A typical linear analysis in the past made use of the small Prandtl number approximation, which results in dropping one term from these equations. Previously, one of the authors (Herron) showed that the small magnetic Prandtl number approximation suppresses MRI in axisymmetric viscous resistive magnetized Taylor–Couette flow when one has no-slip velocity boundary conditions, and insulating magnetic boundary conditions. We follow up here with a proof that MRI is still suppressed with perfectly conducting magnetic boundary conditions on the cylinders.</description><subject>Accretion disks</subject><subject>Approximation</subject><subject>Axisymmetric flow</subject><subject>Black holes</subject><subject>Boundary conditions</subject><subject>Couette flow</subject><subject>Cylinders</subject><subject>Deposition</subject><subject>Engineering</subject><subject>Flow stability</subject><subject>Linear analysis</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Prandtl number</subject><subject>Slip velocity</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQh4MoWKsP4G3Bc3SS7HazRyn-g4IH6zlkdyclZbtZk2ylnnwH39AnMaWCJw_DDMPvG5iPkEsG1wygvAkAIAQFJilUuaDyiExYzoFWIKpjMgHIc8p5WZySsxDWKV0yEBNSv4zD4DEE6_rMmWyjVz1G513UMa10l9k-RF3bzsZdmrOtDY0bQ5YYG6Ld4i9iP7DNlnrXOf_9-TV3I8aImenc-zk5MboLePHbp-T1_m45f6SL54en-e2CNoLNItWFhFwzBrowjDdtw0uJkEpWdZvPsKwQeVtIYzSri0YapkWpazZDVpdtZcSUXB3uDt69jRiiWrvRpxeC4sChSiYkTyl2SDXeheDRqMHbjfY7xUDtVaqDSpVUqr1KJRPDD0xI2X6F_u_y_9AP-4l6YQ</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Eckhardt, Daniel Q.</creator><creator>Herron, Isom H.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8172-0899</orcidid></search><sort><creationdate>20180401</creationdate><title>Suppression of magnetorotational instability in viscous resistive magnetized Taylor–Couette flow</title><author>Eckhardt, Daniel Q. ; Herron, Isom H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a5804a110a5f12cdc278e078e89bd46e79ee2d58ffa1b5c8f1a37ab16e1b7d9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accretion disks</topic><topic>Approximation</topic><topic>Axisymmetric flow</topic><topic>Black holes</topic><topic>Boundary conditions</topic><topic>Couette flow</topic><topic>Cylinders</topic><topic>Deposition</topic><topic>Engineering</topic><topic>Flow stability</topic><topic>Linear analysis</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Prandtl number</topic><topic>Slip velocity</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eckhardt, Daniel Q.</creatorcontrib><creatorcontrib>Herron, Isom H.</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eckhardt, Daniel Q.</au><au>Herron, Isom H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppression of magnetorotational instability in viscous resistive magnetized Taylor–Couette flow</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>69</volume><issue>2</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>49</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>Magnetorotational instability (MRI) is an instability that is responsible for accretion, the phenomenon observed in astrophysical disks, for example around black holes. MRI can be modeled using the equations of MHD. A typical linear analysis in the past made use of the small Prandtl number approximation, which results in dropping one term from these equations. Previously, one of the authors (Herron) showed that the small magnetic Prandtl number approximation suppresses MRI in axisymmetric viscous resistive magnetized Taylor–Couette flow when one has no-slip velocity boundary conditions, and insulating magnetic boundary conditions. We follow up here with a proof that MRI is still suppressed with perfectly conducting magnetic boundary conditions on the cylinders.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-018-0943-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8172-0899</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2018-04, Vol.69 (2), p.1-11, Article 49 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_journals_2020990382 |
source | SpringerLink Journals |
subjects | Accretion disks Approximation Axisymmetric flow Black holes Boundary conditions Couette flow Cylinders Deposition Engineering Flow stability Linear analysis Magnetic fields Magnetohydrodynamics Mathematical analysis Mathematical Methods in Physics Prandtl number Slip velocity Theoretical and Applied Mechanics |
title | Suppression of magnetorotational instability in viscous resistive magnetized Taylor–Couette flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppression%20of%20magnetorotational%20instability%20in%20viscous%20resistive%20magnetized%20Taylor%E2%80%93Couette%20flow&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Eckhardt,%20Daniel%20Q.&rft.date=2018-04-01&rft.volume=69&rft.issue=2&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=49&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-018-0943-8&rft_dat=%3Cproquest_cross%3E2020990382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020990382&rft_id=info:pmid/&rfr_iscdi=true |