Diophantine approximations on definable sets
Consider the vanishing locus of a real analytic function on R n restricted to [ 0 , 1 ] n . We bound the number of rational points of bounded height that approximate this set very well. Our result is formulated and proved in the context of o-minimal structures which give a general framework to work...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2018-04, Vol.24 (2), p.1633-1675 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1675 |
---|---|
container_issue | 2 |
container_start_page | 1633 |
container_title | Selecta mathematica (Basel, Switzerland) |
container_volume | 24 |
creator | Habegger, P. |
description | Consider the vanishing locus of a real analytic function on
R
n
restricted to
[
0
,
1
]
n
. We bound the number of rational points of bounded height that approximate this set very well. Our result is formulated and proved in the context of o-minimal structures which give a general framework to work with sets mentioned above. It complements the theorem of Pila–Wilkie that yields a bound of the same quality for the number of rational points of bounded height that lie on a definable set. We focus our attention on polynomially bounded o-minimal structures, allow algebraic points of bounded degree, and provide an estimate that is uniform over some families of definable sets. We apply these results to study fixed length sums of roots of unity that are small in modulus. |
doi_str_mv | 10.1007/s00029-017-0378-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2020990286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020990286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-73c615abeac10759000c3a636ee5a9efdfcb3f317221a6202bc61700b1bddbc3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuCV6Mzk27SPUr9CwUvvYckm-iWml2TLei3N2UFT55mDr_33sxj7BLhBgHUbQYAajig4iDUkqsjNsMFAW-A4LjsQMRxSYtTdpbzttCSCGbs-r7rh3cTxy76ygxD6r-6DzN2fcxVH6vWhy4au_NV9mM-ZyfB7LK_-J1ztnl82Kye-fr16WV1t-ZOoBy5Ek5ibaw3DkHVTQlzwkghva9N40MbnBVBoCJCIwnIFl4BWLRta52Ys6vJtlzzufd51Nt-n2JJ1AWGpry0lIXCiXKpzzn5oIdUTk_fGkEfOtFTJ7p0og-daFU0NGlyYeObT3_O_4t-ACThY1o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020990286</pqid></control><display><type>article</type><title>Diophantine approximations on definable sets</title><source>SpringerLink Journals - AutoHoldings</source><creator>Habegger, P.</creator><creatorcontrib>Habegger, P.</creatorcontrib><description>Consider the vanishing locus of a real analytic function on
R
n
restricted to
[
0
,
1
]
n
. We bound the number of rational points of bounded height that approximate this set very well. Our result is formulated and proved in the context of o-minimal structures which give a general framework to work with sets mentioned above. It complements the theorem of Pila–Wilkie that yields a bound of the same quality for the number of rational points of bounded height that lie on a definable set. We focus our attention on polynomially bounded o-minimal structures, allow algebraic points of bounded degree, and provide an estimate that is uniform over some families of definable sets. We apply these results to study fixed length sums of roots of unity that are small in modulus.</description><identifier>ISSN: 1022-1824</identifier><identifier>EISSN: 1420-9020</identifier><identifier>DOI: 10.1007/s00029-017-0378-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytic functions ; Mathematics ; Mathematics and Statistics</subject><ispartof>Selecta mathematica (Basel, Switzerland), 2018-04, Vol.24 (2), p.1633-1675</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-73c615abeac10759000c3a636ee5a9efdfcb3f317221a6202bc61700b1bddbc3</citedby><cites>FETCH-LOGICAL-c316t-73c615abeac10759000c3a636ee5a9efdfcb3f317221a6202bc61700b1bddbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00029-017-0378-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00029-017-0378-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Habegger, P.</creatorcontrib><title>Diophantine approximations on definable sets</title><title>Selecta mathematica (Basel, Switzerland)</title><addtitle>Sel. Math. New Ser</addtitle><description>Consider the vanishing locus of a real analytic function on
R
n
restricted to
[
0
,
1
]
n
. We bound the number of rational points of bounded height that approximate this set very well. Our result is formulated and proved in the context of o-minimal structures which give a general framework to work with sets mentioned above. It complements the theorem of Pila–Wilkie that yields a bound of the same quality for the number of rational points of bounded height that lie on a definable set. We focus our attention on polynomially bounded o-minimal structures, allow algebraic points of bounded degree, and provide an estimate that is uniform over some families of definable sets. We apply these results to study fixed length sums of roots of unity that are small in modulus.</description><subject>Analytic functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1022-1824</issn><issn>1420-9020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuCV6Mzk27SPUr9CwUvvYckm-iWml2TLei3N2UFT55mDr_33sxj7BLhBgHUbQYAajig4iDUkqsjNsMFAW-A4LjsQMRxSYtTdpbzttCSCGbs-r7rh3cTxy76ygxD6r-6DzN2fcxVH6vWhy4au_NV9mM-ZyfB7LK_-J1ztnl82Kye-fr16WV1t-ZOoBy5Ek5ibaw3DkHVTQlzwkghva9N40MbnBVBoCJCIwnIFl4BWLRta52Ys6vJtlzzufd51Nt-n2JJ1AWGpry0lIXCiXKpzzn5oIdUTk_fGkEfOtFTJ7p0og-daFU0NGlyYeObT3_O_4t-ACThY1o</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Habegger, P.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Diophantine approximations on definable sets</title><author>Habegger, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-73c615abeac10759000c3a636ee5a9efdfcb3f317221a6202bc61700b1bddbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytic functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habegger, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habegger, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diophantine approximations on definable sets</atitle><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle><stitle>Sel. Math. New Ser</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>24</volume><issue>2</issue><spage>1633</spage><epage>1675</epage><pages>1633-1675</pages><issn>1022-1824</issn><eissn>1420-9020</eissn><abstract>Consider the vanishing locus of a real analytic function on
R
n
restricted to
[
0
,
1
]
n
. We bound the number of rational points of bounded height that approximate this set very well. Our result is formulated and proved in the context of o-minimal structures which give a general framework to work with sets mentioned above. It complements the theorem of Pila–Wilkie that yields a bound of the same quality for the number of rational points of bounded height that lie on a definable set. We focus our attention on polynomially bounded o-minimal structures, allow algebraic points of bounded degree, and provide an estimate that is uniform over some families of definable sets. We apply these results to study fixed length sums of roots of unity that are small in modulus.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00029-017-0378-7</doi><tpages>43</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1824 |
ispartof | Selecta mathematica (Basel, Switzerland), 2018-04, Vol.24 (2), p.1633-1675 |
issn | 1022-1824 1420-9020 |
language | eng |
recordid | cdi_proquest_journals_2020990286 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analytic functions Mathematics Mathematics and Statistics |
title | Diophantine approximations on definable sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diophantine%20approximations%20on%20definable%20sets&rft.jtitle=Selecta%20mathematica%20(Basel,%20Switzerland)&rft.au=Habegger,%20P.&rft.date=2018-04-01&rft.volume=24&rft.issue=2&rft.spage=1633&rft.epage=1675&rft.pages=1633-1675&rft.issn=1022-1824&rft.eissn=1420-9020&rft_id=info:doi/10.1007/s00029-017-0378-7&rft_dat=%3Cproquest_cross%3E2020990286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020990286&rft_id=info:pmid/&rfr_iscdi=true |