Diophantine approximations on definable sets

Consider the vanishing locus of a real analytic function on R n restricted to [ 0 , 1 ] n . We bound the number of rational points of bounded height that approximate this set very well. Our result is formulated and proved in the context of o-minimal structures which give a general framework to work...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Selecta mathematica (Basel, Switzerland) Switzerland), 2018-04, Vol.24 (2), p.1633-1675
1. Verfasser: Habegger, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1675
container_issue 2
container_start_page 1633
container_title Selecta mathematica (Basel, Switzerland)
container_volume 24
creator Habegger, P.
description Consider the vanishing locus of a real analytic function on R n restricted to [ 0 , 1 ] n . We bound the number of rational points of bounded height that approximate this set very well. Our result is formulated and proved in the context of o-minimal structures which give a general framework to work with sets mentioned above. It complements the theorem of Pila–Wilkie that yields a bound of the same quality for the number of rational points of bounded height that lie on a definable set. We focus our attention on polynomially bounded o-minimal structures, allow algebraic points of bounded degree, and provide an estimate that is uniform over some families of definable sets. We apply these results to study fixed length sums of roots of unity that are small in modulus.
doi_str_mv 10.1007/s00029-017-0378-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2020990286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020990286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-73c615abeac10759000c3a636ee5a9efdfcb3f317221a6202bc61700b1bddbc3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuCV6Mzk27SPUr9CwUvvYckm-iWml2TLei3N2UFT55mDr_33sxj7BLhBgHUbQYAajig4iDUkqsjNsMFAW-A4LjsQMRxSYtTdpbzttCSCGbs-r7rh3cTxy76ygxD6r-6DzN2fcxVH6vWhy4au_NV9mM-ZyfB7LK_-J1ztnl82Kye-fr16WV1t-ZOoBy5Ek5ibaw3DkHVTQlzwkghva9N40MbnBVBoCJCIwnIFl4BWLRta52Ys6vJtlzzufd51Nt-n2JJ1AWGpry0lIXCiXKpzzn5oIdUTk_fGkEfOtFTJ7p0og-daFU0NGlyYeObT3_O_4t-ACThY1o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020990286</pqid></control><display><type>article</type><title>Diophantine approximations on definable sets</title><source>SpringerLink Journals - AutoHoldings</source><creator>Habegger, P.</creator><creatorcontrib>Habegger, P.</creatorcontrib><description>Consider the vanishing locus of a real analytic function on R n restricted to [ 0 , 1 ] n . We bound the number of rational points of bounded height that approximate this set very well. Our result is formulated and proved in the context of o-minimal structures which give a general framework to work with sets mentioned above. It complements the theorem of Pila–Wilkie that yields a bound of the same quality for the number of rational points of bounded height that lie on a definable set. We focus our attention on polynomially bounded o-minimal structures, allow algebraic points of bounded degree, and provide an estimate that is uniform over some families of definable sets. We apply these results to study fixed length sums of roots of unity that are small in modulus.</description><identifier>ISSN: 1022-1824</identifier><identifier>EISSN: 1420-9020</identifier><identifier>DOI: 10.1007/s00029-017-0378-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytic functions ; Mathematics ; Mathematics and Statistics</subject><ispartof>Selecta mathematica (Basel, Switzerland), 2018-04, Vol.24 (2), p.1633-1675</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-73c615abeac10759000c3a636ee5a9efdfcb3f317221a6202bc61700b1bddbc3</citedby><cites>FETCH-LOGICAL-c316t-73c615abeac10759000c3a636ee5a9efdfcb3f317221a6202bc61700b1bddbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00029-017-0378-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00029-017-0378-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Habegger, P.</creatorcontrib><title>Diophantine approximations on definable sets</title><title>Selecta mathematica (Basel, Switzerland)</title><addtitle>Sel. Math. New Ser</addtitle><description>Consider the vanishing locus of a real analytic function on R n restricted to [ 0 , 1 ] n . We bound the number of rational points of bounded height that approximate this set very well. Our result is formulated and proved in the context of o-minimal structures which give a general framework to work with sets mentioned above. It complements the theorem of Pila–Wilkie that yields a bound of the same quality for the number of rational points of bounded height that lie on a definable set. We focus our attention on polynomially bounded o-minimal structures, allow algebraic points of bounded degree, and provide an estimate that is uniform over some families of definable sets. We apply these results to study fixed length sums of roots of unity that are small in modulus.</description><subject>Analytic functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1022-1824</issn><issn>1420-9020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuCV6Mzk27SPUr9CwUvvYckm-iWml2TLei3N2UFT55mDr_33sxj7BLhBgHUbQYAajig4iDUkqsjNsMFAW-A4LjsQMRxSYtTdpbzttCSCGbs-r7rh3cTxy76ygxD6r-6DzN2fcxVH6vWhy4au_NV9mM-ZyfB7LK_-J1ztnl82Kye-fr16WV1t-ZOoBy5Ek5ibaw3DkHVTQlzwkghva9N40MbnBVBoCJCIwnIFl4BWLRta52Ys6vJtlzzufd51Nt-n2JJ1AWGpry0lIXCiXKpzzn5oIdUTk_fGkEfOtFTJ7p0og-daFU0NGlyYeObT3_O_4t-ACThY1o</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Habegger, P.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Diophantine approximations on definable sets</title><author>Habegger, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-73c615abeac10759000c3a636ee5a9efdfcb3f317221a6202bc61700b1bddbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytic functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habegger, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habegger, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diophantine approximations on definable sets</atitle><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle><stitle>Sel. Math. New Ser</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>24</volume><issue>2</issue><spage>1633</spage><epage>1675</epage><pages>1633-1675</pages><issn>1022-1824</issn><eissn>1420-9020</eissn><abstract>Consider the vanishing locus of a real analytic function on R n restricted to [ 0 , 1 ] n . We bound the number of rational points of bounded height that approximate this set very well. Our result is formulated and proved in the context of o-minimal structures which give a general framework to work with sets mentioned above. It complements the theorem of Pila–Wilkie that yields a bound of the same quality for the number of rational points of bounded height that lie on a definable set. We focus our attention on polynomially bounded o-minimal structures, allow algebraic points of bounded degree, and provide an estimate that is uniform over some families of definable sets. We apply these results to study fixed length sums of roots of unity that are small in modulus.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00029-017-0378-7</doi><tpages>43</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-1824
ispartof Selecta mathematica (Basel, Switzerland), 2018-04, Vol.24 (2), p.1633-1675
issn 1022-1824
1420-9020
language eng
recordid cdi_proquest_journals_2020990286
source SpringerLink Journals - AutoHoldings
subjects Analytic functions
Mathematics
Mathematics and Statistics
title Diophantine approximations on definable sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diophantine%20approximations%20on%20definable%20sets&rft.jtitle=Selecta%20mathematica%20(Basel,%20Switzerland)&rft.au=Habegger,%20P.&rft.date=2018-04-01&rft.volume=24&rft.issue=2&rft.spage=1633&rft.epage=1675&rft.pages=1633-1675&rft.issn=1022-1824&rft.eissn=1420-9020&rft_id=info:doi/10.1007/s00029-017-0378-7&rft_dat=%3Cproquest_cross%3E2020990286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020990286&rft_id=info:pmid/&rfr_iscdi=true