Computing cobordism maps in link Floer homology and the reduced Khovanov TQFT

We study the maps induced on link Floer homology by elementary decorated link cobordisms. We compute these for births, deaths, stabilizations, and destabilizations, and show that saddle cobordisms can be computed in terms of maps in a decorated skein exact triangle that extends the oriented skein ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Selecta mathematica (Basel, Switzerland) Switzerland), 2018-04, Vol.24 (2), p.1315-1390, Article 1315
Hauptverfasser: Juhász, András, Marengon, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1390
container_issue 2
container_start_page 1315
container_title Selecta mathematica (Basel, Switzerland)
container_volume 24
creator Juhász, András
Marengon, Marco
description We study the maps induced on link Floer homology by elementary decorated link cobordisms. We compute these for births, deaths, stabilizations, and destabilizations, and show that saddle cobordisms can be computed in terms of maps in a decorated skein exact triangle that extends the oriented skein exact triangle in knot Floer homology. In particular, we completely determine the Alexander and Maslov grading shifts. As a corollary, we compute the maps induced by elementary cobordisms between unlinks. We show that these give rise to a ( 1 + 1 ) -dimensional TQFT that coincides with the reduced Khovanov TQFT. Hence, when applied to the cube of resolutions of a marked link diagram, it gives the complex defining the reduced Khovanov homology of the knot. Finally, we define a spectral sequence from (reduced) Khovanov homology using these cobordism maps, and we prove that it is an invariant of the (marked) link.
doi_str_mv 10.1007/s00029-017-0368-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2020983319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020983319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d70ceb2cfe744232423905bbe625cd4a966a4b5af127f6ac0c52c5ff88edc3853</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG8Bz9XJ9P9RFlfFFRHWc0jTdDdrm9SkFfbbm6WCIOhhmDm837yZR8glg2sGkN94AMAyApZHEGdFVB6RGUsQohIQjsMMiBErMDklZ97vgjpDhBl5XtiuHwdtNlTayrpa-452ovdUG9pq806XrVWObm1nW7vZU2FqOmwVdaoeparp09Z-CmM_6fp1uT4nJ41ovbr47nPytrxbLx6i1cv94-J2FcmYZUNU5yBVhbJReZJgjKFKSKtKZZjKOhFllomkSkXDMG8yIUGmKNOmKQpVy7hI4zm5mvb2zn6Myg98Z0dngiXH8G9ZxDErg4pNKums9041vHe6E27PGfBDanxKjYfU-CE1fmDyX4zUgxi0NYMTuv2XxIn0wcVslPu56W_oC1zLgMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020983319</pqid></control><display><type>article</type><title>Computing cobordism maps in link Floer homology and the reduced Khovanov TQFT</title><source>Springer Nature - Complete Springer Journals</source><creator>Juhász, András ; Marengon, Marco</creator><creatorcontrib>Juhász, András ; Marengon, Marco</creatorcontrib><description>We study the maps induced on link Floer homology by elementary decorated link cobordisms. We compute these for births, deaths, stabilizations, and destabilizations, and show that saddle cobordisms can be computed in terms of maps in a decorated skein exact triangle that extends the oriented skein exact triangle in knot Floer homology. In particular, we completely determine the Alexander and Maslov grading shifts. As a corollary, we compute the maps induced by elementary cobordisms between unlinks. We show that these give rise to a ( 1 + 1 ) -dimensional TQFT that coincides with the reduced Khovanov TQFT. Hence, when applied to the cube of resolutions of a marked link diagram, it gives the complex defining the reduced Khovanov homology of the knot. Finally, we define a spectral sequence from (reduced) Khovanov homology using these cobordism maps, and we prove that it is an invariant of the (marked) link.</description><identifier>ISSN: 1022-1824</identifier><identifier>EISSN: 1420-9020</identifier><identifier>DOI: 10.1007/s00029-017-0368-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Homology ; Mathematics ; Mathematics and Statistics</subject><ispartof>Selecta mathematica (Basel, Switzerland), 2018-04, Vol.24 (2), p.1315-1390, Article 1315</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d70ceb2cfe744232423905bbe625cd4a966a4b5af127f6ac0c52c5ff88edc3853</citedby><cites>FETCH-LOGICAL-c316t-d70ceb2cfe744232423905bbe625cd4a966a4b5af127f6ac0c52c5ff88edc3853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00029-017-0368-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00029-017-0368-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27902,27903,41466,42535,51296</link.rule.ids></links><search><creatorcontrib>Juhász, András</creatorcontrib><creatorcontrib>Marengon, Marco</creatorcontrib><title>Computing cobordism maps in link Floer homology and the reduced Khovanov TQFT</title><title>Selecta mathematica (Basel, Switzerland)</title><addtitle>Sel. Math. New Ser</addtitle><description>We study the maps induced on link Floer homology by elementary decorated link cobordisms. We compute these for births, deaths, stabilizations, and destabilizations, and show that saddle cobordisms can be computed in terms of maps in a decorated skein exact triangle that extends the oriented skein exact triangle in knot Floer homology. In particular, we completely determine the Alexander and Maslov grading shifts. As a corollary, we compute the maps induced by elementary cobordisms between unlinks. We show that these give rise to a ( 1 + 1 ) -dimensional TQFT that coincides with the reduced Khovanov TQFT. Hence, when applied to the cube of resolutions of a marked link diagram, it gives the complex defining the reduced Khovanov homology of the knot. Finally, we define a spectral sequence from (reduced) Khovanov homology using these cobordism maps, and we prove that it is an invariant of the (marked) link.</description><subject>Homology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1022-1824</issn><issn>1420-9020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG8Bz9XJ9P9RFlfFFRHWc0jTdDdrm9SkFfbbm6WCIOhhmDm837yZR8glg2sGkN94AMAyApZHEGdFVB6RGUsQohIQjsMMiBErMDklZ97vgjpDhBl5XtiuHwdtNlTayrpa-452ovdUG9pq806XrVWObm1nW7vZU2FqOmwVdaoeparp09Z-CmM_6fp1uT4nJ41ovbr47nPytrxbLx6i1cv94-J2FcmYZUNU5yBVhbJReZJgjKFKSKtKZZjKOhFllomkSkXDMG8yIUGmKNOmKQpVy7hI4zm5mvb2zn6Myg98Z0dngiXH8G9ZxDErg4pNKums9041vHe6E27PGfBDanxKjYfU-CE1fmDyX4zUgxi0NYMTuv2XxIn0wcVslPu56W_oC1zLgMU</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Juhász, András</creator><creator>Marengon, Marco</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Computing cobordism maps in link Floer homology and the reduced Khovanov TQFT</title><author>Juhász, András ; Marengon, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d70ceb2cfe744232423905bbe625cd4a966a4b5af127f6ac0c52c5ff88edc3853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Homology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juhász, András</creatorcontrib><creatorcontrib>Marengon, Marco</creatorcontrib><collection>CrossRef</collection><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juhász, András</au><au>Marengon, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing cobordism maps in link Floer homology and the reduced Khovanov TQFT</atitle><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle><stitle>Sel. Math. New Ser</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>24</volume><issue>2</issue><spage>1315</spage><epage>1390</epage><pages>1315-1390</pages><artnum>1315</artnum><issn>1022-1824</issn><eissn>1420-9020</eissn><abstract>We study the maps induced on link Floer homology by elementary decorated link cobordisms. We compute these for births, deaths, stabilizations, and destabilizations, and show that saddle cobordisms can be computed in terms of maps in a decorated skein exact triangle that extends the oriented skein exact triangle in knot Floer homology. In particular, we completely determine the Alexander and Maslov grading shifts. As a corollary, we compute the maps induced by elementary cobordisms between unlinks. We show that these give rise to a ( 1 + 1 ) -dimensional TQFT that coincides with the reduced Khovanov TQFT. Hence, when applied to the cube of resolutions of a marked link diagram, it gives the complex defining the reduced Khovanov homology of the knot. Finally, we define a spectral sequence from (reduced) Khovanov homology using these cobordism maps, and we prove that it is an invariant of the (marked) link.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00029-017-0368-9</doi><tpages>76</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-1824
ispartof Selecta mathematica (Basel, Switzerland), 2018-04, Vol.24 (2), p.1315-1390, Article 1315
issn 1022-1824
1420-9020
language eng
recordid cdi_proquest_journals_2020983319
source Springer Nature - Complete Springer Journals
subjects Homology
Mathematics
Mathematics and Statistics
title Computing cobordism maps in link Floer homology and the reduced Khovanov TQFT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20cobordism%20maps%20in%20link%20Floer%20homology%20and%20the%20reduced%20Khovanov%20TQFT&rft.jtitle=Selecta%20mathematica%20(Basel,%20Switzerland)&rft.au=Juh%C3%A1sz,%20Andr%C3%A1s&rft.date=2018-04-01&rft.volume=24&rft.issue=2&rft.spage=1315&rft.epage=1390&rft.pages=1315-1390&rft.artnum=1315&rft.issn=1022-1824&rft.eissn=1420-9020&rft_id=info:doi/10.1007/s00029-017-0368-9&rft_dat=%3Cproquest_cross%3E2020983319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020983319&rft_id=info:pmid/&rfr_iscdi=true