Computing cobordism maps in link Floer homology and the reduced Khovanov TQFT
We study the maps induced on link Floer homology by elementary decorated link cobordisms. We compute these for births, deaths, stabilizations, and destabilizations, and show that saddle cobordisms can be computed in terms of maps in a decorated skein exact triangle that extends the oriented skein ex...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2018-04, Vol.24 (2), p.1315-1390, Article 1315 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1390 |
---|---|
container_issue | 2 |
container_start_page | 1315 |
container_title | Selecta mathematica (Basel, Switzerland) |
container_volume | 24 |
creator | Juhász, András Marengon, Marco |
description | We study the maps induced on link Floer homology by elementary decorated link cobordisms. We compute these for births, deaths, stabilizations, and destabilizations, and show that saddle cobordisms can be computed in terms of maps in a decorated skein exact triangle that extends the oriented skein exact triangle in knot Floer homology. In particular, we completely determine the Alexander and Maslov grading shifts. As a corollary, we compute the maps induced by elementary cobordisms between unlinks. We show that these give rise to a
(
1
+
1
)
-dimensional TQFT that coincides with the reduced Khovanov TQFT. Hence, when applied to the cube of resolutions of a marked link diagram, it gives the complex defining the reduced Khovanov homology of the knot. Finally, we define a spectral sequence from (reduced) Khovanov homology using these cobordism maps, and we prove that it is an invariant of the (marked) link. |
doi_str_mv | 10.1007/s00029-017-0368-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2020983319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020983319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d70ceb2cfe744232423905bbe625cd4a966a4b5af127f6ac0c52c5ff88edc3853</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG8Bz9XJ9P9RFlfFFRHWc0jTdDdrm9SkFfbbm6WCIOhhmDm837yZR8glg2sGkN94AMAyApZHEGdFVB6RGUsQohIQjsMMiBErMDklZ97vgjpDhBl5XtiuHwdtNlTayrpa-452ovdUG9pq806XrVWObm1nW7vZU2FqOmwVdaoeparp09Z-CmM_6fp1uT4nJ41ovbr47nPytrxbLx6i1cv94-J2FcmYZUNU5yBVhbJReZJgjKFKSKtKZZjKOhFllomkSkXDMG8yIUGmKNOmKQpVy7hI4zm5mvb2zn6Myg98Z0dngiXH8G9ZxDErg4pNKums9041vHe6E27PGfBDanxKjYfU-CE1fmDyX4zUgxi0NYMTuv2XxIn0wcVslPu56W_oC1zLgMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020983319</pqid></control><display><type>article</type><title>Computing cobordism maps in link Floer homology and the reduced Khovanov TQFT</title><source>Springer Nature - Complete Springer Journals</source><creator>Juhász, András ; Marengon, Marco</creator><creatorcontrib>Juhász, András ; Marengon, Marco</creatorcontrib><description>We study the maps induced on link Floer homology by elementary decorated link cobordisms. We compute these for births, deaths, stabilizations, and destabilizations, and show that saddle cobordisms can be computed in terms of maps in a decorated skein exact triangle that extends the oriented skein exact triangle in knot Floer homology. In particular, we completely determine the Alexander and Maslov grading shifts. As a corollary, we compute the maps induced by elementary cobordisms between unlinks. We show that these give rise to a
(
1
+
1
)
-dimensional TQFT that coincides with the reduced Khovanov TQFT. Hence, when applied to the cube of resolutions of a marked link diagram, it gives the complex defining the reduced Khovanov homology of the knot. Finally, we define a spectral sequence from (reduced) Khovanov homology using these cobordism maps, and we prove that it is an invariant of the (marked) link.</description><identifier>ISSN: 1022-1824</identifier><identifier>EISSN: 1420-9020</identifier><identifier>DOI: 10.1007/s00029-017-0368-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Homology ; Mathematics ; Mathematics and Statistics</subject><ispartof>Selecta mathematica (Basel, Switzerland), 2018-04, Vol.24 (2), p.1315-1390, Article 1315</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d70ceb2cfe744232423905bbe625cd4a966a4b5af127f6ac0c52c5ff88edc3853</citedby><cites>FETCH-LOGICAL-c316t-d70ceb2cfe744232423905bbe625cd4a966a4b5af127f6ac0c52c5ff88edc3853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00029-017-0368-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00029-017-0368-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27902,27903,41466,42535,51296</link.rule.ids></links><search><creatorcontrib>Juhász, András</creatorcontrib><creatorcontrib>Marengon, Marco</creatorcontrib><title>Computing cobordism maps in link Floer homology and the reduced Khovanov TQFT</title><title>Selecta mathematica (Basel, Switzerland)</title><addtitle>Sel. Math. New Ser</addtitle><description>We study the maps induced on link Floer homology by elementary decorated link cobordisms. We compute these for births, deaths, stabilizations, and destabilizations, and show that saddle cobordisms can be computed in terms of maps in a decorated skein exact triangle that extends the oriented skein exact triangle in knot Floer homology. In particular, we completely determine the Alexander and Maslov grading shifts. As a corollary, we compute the maps induced by elementary cobordisms between unlinks. We show that these give rise to a
(
1
+
1
)
-dimensional TQFT that coincides with the reduced Khovanov TQFT. Hence, when applied to the cube of resolutions of a marked link diagram, it gives the complex defining the reduced Khovanov homology of the knot. Finally, we define a spectral sequence from (reduced) Khovanov homology using these cobordism maps, and we prove that it is an invariant of the (marked) link.</description><subject>Homology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1022-1824</issn><issn>1420-9020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG8Bz9XJ9P9RFlfFFRHWc0jTdDdrm9SkFfbbm6WCIOhhmDm837yZR8glg2sGkN94AMAyApZHEGdFVB6RGUsQohIQjsMMiBErMDklZ97vgjpDhBl5XtiuHwdtNlTayrpa-452ovdUG9pq806XrVWObm1nW7vZU2FqOmwVdaoeparp09Z-CmM_6fp1uT4nJ41ovbr47nPytrxbLx6i1cv94-J2FcmYZUNU5yBVhbJReZJgjKFKSKtKZZjKOhFllomkSkXDMG8yIUGmKNOmKQpVy7hI4zm5mvb2zn6Myg98Z0dngiXH8G9ZxDErg4pNKums9041vHe6E27PGfBDanxKjYfU-CE1fmDyX4zUgxi0NYMTuv2XxIn0wcVslPu56W_oC1zLgMU</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Juhász, András</creator><creator>Marengon, Marco</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Computing cobordism maps in link Floer homology and the reduced Khovanov TQFT</title><author>Juhász, András ; Marengon, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d70ceb2cfe744232423905bbe625cd4a966a4b5af127f6ac0c52c5ff88edc3853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Homology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juhász, András</creatorcontrib><creatorcontrib>Marengon, Marco</creatorcontrib><collection>CrossRef</collection><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juhász, András</au><au>Marengon, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing cobordism maps in link Floer homology and the reduced Khovanov TQFT</atitle><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle><stitle>Sel. Math. New Ser</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>24</volume><issue>2</issue><spage>1315</spage><epage>1390</epage><pages>1315-1390</pages><artnum>1315</artnum><issn>1022-1824</issn><eissn>1420-9020</eissn><abstract>We study the maps induced on link Floer homology by elementary decorated link cobordisms. We compute these for births, deaths, stabilizations, and destabilizations, and show that saddle cobordisms can be computed in terms of maps in a decorated skein exact triangle that extends the oriented skein exact triangle in knot Floer homology. In particular, we completely determine the Alexander and Maslov grading shifts. As a corollary, we compute the maps induced by elementary cobordisms between unlinks. We show that these give rise to a
(
1
+
1
)
-dimensional TQFT that coincides with the reduced Khovanov TQFT. Hence, when applied to the cube of resolutions of a marked link diagram, it gives the complex defining the reduced Khovanov homology of the knot. Finally, we define a spectral sequence from (reduced) Khovanov homology using these cobordism maps, and we prove that it is an invariant of the (marked) link.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00029-017-0368-9</doi><tpages>76</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1824 |
ispartof | Selecta mathematica (Basel, Switzerland), 2018-04, Vol.24 (2), p.1315-1390, Article 1315 |
issn | 1022-1824 1420-9020 |
language | eng |
recordid | cdi_proquest_journals_2020983319 |
source | Springer Nature - Complete Springer Journals |
subjects | Homology Mathematics Mathematics and Statistics |
title | Computing cobordism maps in link Floer homology and the reduced Khovanov TQFT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20cobordism%20maps%20in%20link%20Floer%20homology%20and%20the%20reduced%20Khovanov%20TQFT&rft.jtitle=Selecta%20mathematica%20(Basel,%20Switzerland)&rft.au=Juh%C3%A1sz,%20Andr%C3%A1s&rft.date=2018-04-01&rft.volume=24&rft.issue=2&rft.spage=1315&rft.epage=1390&rft.pages=1315-1390&rft.artnum=1315&rft.issn=1022-1824&rft.eissn=1420-9020&rft_id=info:doi/10.1007/s00029-017-0368-9&rft_dat=%3Cproquest_cross%3E2020983319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020983319&rft_id=info:pmid/&rfr_iscdi=true |