Comparison between geodetic and oceanographic approaches to estimate mean dynamic topography for vertical datum unification: evaluation at Australian tide gauges
The direct method of vertical datum unification requires estimates of the ocean’s mean dynamic topography (MDT) at tide gauges, which can be sourced from either geodetic or oceanographic approaches. To assess the suitability of different types of MDT for this purpose, we evaluate 13 physics-based nu...
Gespeichert in:
Veröffentlicht in: | Journal of geodesy 2018-12, Vol.92 (12), p.1413-1437 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1437 |
---|---|
container_issue | 12 |
container_start_page | 1413 |
container_title | Journal of geodesy |
container_volume | 92 |
creator | Filmer, M. S. Hughes, C. W. Woodworth, P. L. Featherstone, W. E. Bingham, R. J. |
description | The direct method of vertical datum unification requires estimates of the ocean’s mean dynamic topography (MDT) at tide gauges, which can be sourced from either geodetic or oceanographic approaches. To assess the suitability of different types of MDT for this purpose, we evaluate 13 physics-based numerical ocean models and six MDTs computed from observed geodetic and/or ocean data at 32 tide gauges around the Australian coast. We focus on the viability of numerical ocean models for vertical datum unification, classifying the 13 ocean models used as either independent (do not contain assimilated geodetic data) or non-independent (do contain assimilated geodetic data). We find that the independent and non-independent ocean models deliver similar results. Maximum differences among ocean models and geodetic MDTs reach >150 mm at several Australian tide gauges and are considered anomalous at the 99% confidence level. These differences appear to be of geodetic origin, but without additional independent information, or formal error estimates for each model, some of these errors remain inseparable. Our results imply that some ocean models have standard deviations of differences with other MDTs (using geodetic and/or ocean observations) at Australian tide gauges, and with levelling between some Australian tide gauges, of
∼
±
50
mm
. This indicates that they should be considered as an alternative to geodetic MDTs for the direct unification of vertical datums. They can also be used as diagnostics for errors in geodetic MDT in coastal zones, but the inseparability problem remains, where the error cannot be discriminated between the geoid model or altimeter-derived mean sea surface. |
doi_str_mv | 10.1007/s00190-018-1131-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2020625971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020625971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-67b20a75ac065844ac58c3660912a6b55b6745f005c2f70decfd0f23be12e88b3</originalsourceid><addsrcrecordid>eNp1kUFr3DAQhUVoINs0P6A3Qc5ORrJl2b2FpWkDgV7asxjLY8dhLbmSnLI_J_-02jjQU0-Shu-94ekx9lnAjQDQtxFAtFCAaAohSlGoM7YTVSkLUbbVB7aDtmoLrUV1wT7G-JxprZp6x173fl4wTNE73lH6Q-T4SL6nNFmOrufeEjo_BlyeTpNlCR7tE0WePKeYphkT8TkzvD86nDOT_LLxRz74wF8oZC888B7TOvPVTUN-psm7L5xe8LC-3TkmfrfGFPAwZa809cRHXEeKn9j5gIdIV-_nJft1__Xn_nvx-OPbw_7usbClalNR604CaoUWatVUFVrV2LKuoRUS606prtaVGgCUlYOGnuzQwyDLjoSkpunKS3a9-eaEv9cczTz7Nbi80kiQUEvVapEpsVE2-BgDDWYJ-Q_C0QgwpybM1oTJTZhTE0Zljdw0MbNupPDP-f-iv8G_j4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020625971</pqid></control><display><type>article</type><title>Comparison between geodetic and oceanographic approaches to estimate mean dynamic topography for vertical datum unification: evaluation at Australian tide gauges</title><source>Springer Nature - Complete Springer Journals</source><creator>Filmer, M. S. ; Hughes, C. W. ; Woodworth, P. L. ; Featherstone, W. E. ; Bingham, R. J.</creator><creatorcontrib>Filmer, M. S. ; Hughes, C. W. ; Woodworth, P. L. ; Featherstone, W. E. ; Bingham, R. J.</creatorcontrib><description>The direct method of vertical datum unification requires estimates of the ocean’s mean dynamic topography (MDT) at tide gauges, which can be sourced from either geodetic or oceanographic approaches. To assess the suitability of different types of MDT for this purpose, we evaluate 13 physics-based numerical ocean models and six MDTs computed from observed geodetic and/or ocean data at 32 tide gauges around the Australian coast. We focus on the viability of numerical ocean models for vertical datum unification, classifying the 13 ocean models used as either independent (do not contain assimilated geodetic data) or non-independent (do contain assimilated geodetic data). We find that the independent and non-independent ocean models deliver similar results. Maximum differences among ocean models and geodetic MDTs reach >150 mm at several Australian tide gauges and are considered anomalous at the 99% confidence level. These differences appear to be of geodetic origin, but without additional independent information, or formal error estimates for each model, some of these errors remain inseparable. Our results imply that some ocean models have standard deviations of differences with other MDTs (using geodetic and/or ocean observations) at Australian tide gauges, and with levelling between some Australian tide gauges, of
∼
±
50
mm
. This indicates that they should be considered as an alternative to geodetic MDTs for the direct unification of vertical datums. They can also be used as diagnostics for errors in geodetic MDT in coastal zones, but the inseparability problem remains, where the error cannot be discriminated between the geoid model or altimeter-derived mean sea surface.</description><identifier>ISSN: 0949-7714</identifier><identifier>EISSN: 1432-1394</identifier><identifier>DOI: 10.1007/s00190-018-1131-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Altimeters ; Coastal zone ; Coastal zones ; Data ; Dynamic topography ; Earth and Environmental Science ; Earth Sciences ; Errors ; Evaluation ; Gauges ; Geodetics ; Geoid ; Geophysics/Geodesy ; Ice ; Levelling ; Ocean models ; Oceans ; Original Article ; Physics ; Sea level ; Sea surface ; Slope ; Temperature (air-sea) ; Tide gauges ; Topography ; Topography (geology)</subject><ispartof>Journal of geodesy, 2018-12, Vol.92 (12), p.1413-1437</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Journal of Geodesy is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-67b20a75ac065844ac58c3660912a6b55b6745f005c2f70decfd0f23be12e88b3</citedby><cites>FETCH-LOGICAL-c359t-67b20a75ac065844ac58c3660912a6b55b6745f005c2f70decfd0f23be12e88b3</cites><orcidid>0000-0001-9644-4535 ; 0000-0002-3555-4869 ; 0000-0002-9355-0233 ; 0000-0002-6681-239X ; 0000-0003-0609-5672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00190-018-1131-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00190-018-1131-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Filmer, M. S.</creatorcontrib><creatorcontrib>Hughes, C. W.</creatorcontrib><creatorcontrib>Woodworth, P. L.</creatorcontrib><creatorcontrib>Featherstone, W. E.</creatorcontrib><creatorcontrib>Bingham, R. J.</creatorcontrib><title>Comparison between geodetic and oceanographic approaches to estimate mean dynamic topography for vertical datum unification: evaluation at Australian tide gauges</title><title>Journal of geodesy</title><addtitle>J Geod</addtitle><description>The direct method of vertical datum unification requires estimates of the ocean’s mean dynamic topography (MDT) at tide gauges, which can be sourced from either geodetic or oceanographic approaches. To assess the suitability of different types of MDT for this purpose, we evaluate 13 physics-based numerical ocean models and six MDTs computed from observed geodetic and/or ocean data at 32 tide gauges around the Australian coast. We focus on the viability of numerical ocean models for vertical datum unification, classifying the 13 ocean models used as either independent (do not contain assimilated geodetic data) or non-independent (do contain assimilated geodetic data). We find that the independent and non-independent ocean models deliver similar results. Maximum differences among ocean models and geodetic MDTs reach >150 mm at several Australian tide gauges and are considered anomalous at the 99% confidence level. These differences appear to be of geodetic origin, but without additional independent information, or formal error estimates for each model, some of these errors remain inseparable. Our results imply that some ocean models have standard deviations of differences with other MDTs (using geodetic and/or ocean observations) at Australian tide gauges, and with levelling between some Australian tide gauges, of
∼
±
50
mm
. This indicates that they should be considered as an alternative to geodetic MDTs for the direct unification of vertical datums. They can also be used as diagnostics for errors in geodetic MDT in coastal zones, but the inseparability problem remains, where the error cannot be discriminated between the geoid model or altimeter-derived mean sea surface.</description><subject>Altimeters</subject><subject>Coastal zone</subject><subject>Coastal zones</subject><subject>Data</subject><subject>Dynamic topography</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Errors</subject><subject>Evaluation</subject><subject>Gauges</subject><subject>Geodetics</subject><subject>Geoid</subject><subject>Geophysics/Geodesy</subject><subject>Ice</subject><subject>Levelling</subject><subject>Ocean models</subject><subject>Oceans</subject><subject>Original Article</subject><subject>Physics</subject><subject>Sea level</subject><subject>Sea surface</subject><subject>Slope</subject><subject>Temperature (air-sea)</subject><subject>Tide gauges</subject><subject>Topography</subject><subject>Topography (geology)</subject><issn>0949-7714</issn><issn>1432-1394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kUFr3DAQhUVoINs0P6A3Qc5ORrJl2b2FpWkDgV7asxjLY8dhLbmSnLI_J_-02jjQU0-Shu-94ekx9lnAjQDQtxFAtFCAaAohSlGoM7YTVSkLUbbVB7aDtmoLrUV1wT7G-JxprZp6x173fl4wTNE73lH6Q-T4SL6nNFmOrufeEjo_BlyeTpNlCR7tE0WePKeYphkT8TkzvD86nDOT_LLxRz74wF8oZC888B7TOvPVTUN-psm7L5xe8LC-3TkmfrfGFPAwZa809cRHXEeKn9j5gIdIV-_nJft1__Xn_nvx-OPbw_7usbClalNR604CaoUWatVUFVrV2LKuoRUS606prtaVGgCUlYOGnuzQwyDLjoSkpunKS3a9-eaEv9cczTz7Nbi80kiQUEvVapEpsVE2-BgDDWYJ-Q_C0QgwpybM1oTJTZhTE0Zljdw0MbNupPDP-f-iv8G_j4M</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Filmer, M. S.</creator><creator>Hughes, C. W.</creator><creator>Woodworth, P. L.</creator><creator>Featherstone, W. E.</creator><creator>Bingham, R. J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9644-4535</orcidid><orcidid>https://orcid.org/0000-0002-3555-4869</orcidid><orcidid>https://orcid.org/0000-0002-9355-0233</orcidid><orcidid>https://orcid.org/0000-0002-6681-239X</orcidid><orcidid>https://orcid.org/0000-0003-0609-5672</orcidid></search><sort><creationdate>20181201</creationdate><title>Comparison between geodetic and oceanographic approaches to estimate mean dynamic topography for vertical datum unification: evaluation at Australian tide gauges</title><author>Filmer, M. S. ; Hughes, C. W. ; Woodworth, P. L. ; Featherstone, W. E. ; Bingham, R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-67b20a75ac065844ac58c3660912a6b55b6745f005c2f70decfd0f23be12e88b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Altimeters</topic><topic>Coastal zone</topic><topic>Coastal zones</topic><topic>Data</topic><topic>Dynamic topography</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Errors</topic><topic>Evaluation</topic><topic>Gauges</topic><topic>Geodetics</topic><topic>Geoid</topic><topic>Geophysics/Geodesy</topic><topic>Ice</topic><topic>Levelling</topic><topic>Ocean models</topic><topic>Oceans</topic><topic>Original Article</topic><topic>Physics</topic><topic>Sea level</topic><topic>Sea surface</topic><topic>Slope</topic><topic>Temperature (air-sea)</topic><topic>Tide gauges</topic><topic>Topography</topic><topic>Topography (geology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filmer, M. S.</creatorcontrib><creatorcontrib>Hughes, C. W.</creatorcontrib><creatorcontrib>Woodworth, P. L.</creatorcontrib><creatorcontrib>Featherstone, W. E.</creatorcontrib><creatorcontrib>Bingham, R. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of geodesy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filmer, M. S.</au><au>Hughes, C. W.</au><au>Woodworth, P. L.</au><au>Featherstone, W. E.</au><au>Bingham, R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison between geodetic and oceanographic approaches to estimate mean dynamic topography for vertical datum unification: evaluation at Australian tide gauges</atitle><jtitle>Journal of geodesy</jtitle><stitle>J Geod</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>92</volume><issue>12</issue><spage>1413</spage><epage>1437</epage><pages>1413-1437</pages><issn>0949-7714</issn><eissn>1432-1394</eissn><abstract>The direct method of vertical datum unification requires estimates of the ocean’s mean dynamic topography (MDT) at tide gauges, which can be sourced from either geodetic or oceanographic approaches. To assess the suitability of different types of MDT for this purpose, we evaluate 13 physics-based numerical ocean models and six MDTs computed from observed geodetic and/or ocean data at 32 tide gauges around the Australian coast. We focus on the viability of numerical ocean models for vertical datum unification, classifying the 13 ocean models used as either independent (do not contain assimilated geodetic data) or non-independent (do contain assimilated geodetic data). We find that the independent and non-independent ocean models deliver similar results. Maximum differences among ocean models and geodetic MDTs reach >150 mm at several Australian tide gauges and are considered anomalous at the 99% confidence level. These differences appear to be of geodetic origin, but without additional independent information, or formal error estimates for each model, some of these errors remain inseparable. Our results imply that some ocean models have standard deviations of differences with other MDTs (using geodetic and/or ocean observations) at Australian tide gauges, and with levelling between some Australian tide gauges, of
∼
±
50
mm
. This indicates that they should be considered as an alternative to geodetic MDTs for the direct unification of vertical datums. They can also be used as diagnostics for errors in geodetic MDT in coastal zones, but the inseparability problem remains, where the error cannot be discriminated between the geoid model or altimeter-derived mean sea surface.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00190-018-1131-5</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-9644-4535</orcidid><orcidid>https://orcid.org/0000-0002-3555-4869</orcidid><orcidid>https://orcid.org/0000-0002-9355-0233</orcidid><orcidid>https://orcid.org/0000-0002-6681-239X</orcidid><orcidid>https://orcid.org/0000-0003-0609-5672</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0949-7714 |
ispartof | Journal of geodesy, 2018-12, Vol.92 (12), p.1413-1437 |
issn | 0949-7714 1432-1394 |
language | eng |
recordid | cdi_proquest_journals_2020625971 |
source | Springer Nature - Complete Springer Journals |
subjects | Altimeters Coastal zone Coastal zones Data Dynamic topography Earth and Environmental Science Earth Sciences Errors Evaluation Gauges Geodetics Geoid Geophysics/Geodesy Ice Levelling Ocean models Oceans Original Article Physics Sea level Sea surface Slope Temperature (air-sea) Tide gauges Topography Topography (geology) |
title | Comparison between geodetic and oceanographic approaches to estimate mean dynamic topography for vertical datum unification: evaluation at Australian tide gauges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20between%20geodetic%20and%20oceanographic%20approaches%20to%20estimate%20mean%20dynamic%20topography%20for%20vertical%20datum%20unification:%20evaluation%20at%20Australian%20tide%20gauges&rft.jtitle=Journal%20of%20geodesy&rft.au=Filmer,%20M.%20S.&rft.date=2018-12-01&rft.volume=92&rft.issue=12&rft.spage=1413&rft.epage=1437&rft.pages=1413-1437&rft.issn=0949-7714&rft.eissn=1432-1394&rft_id=info:doi/10.1007/s00190-018-1131-5&rft_dat=%3Cproquest_cross%3E2020625971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020625971&rft_id=info:pmid/&rfr_iscdi=true |