Sodium silicate activated slag‐fly ash binders: Part I – Processing, microstructure, and mechanical properties

Alkali silicate activated slag and class F fly ash‐based binders are ambient curing, structural materials that are feasible replacements for ordinary Portland cement (OPC). They exhibit advantageous mechanical properties and less environmental impact than OPC. In this work, five sodium silicate acti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2018-06, Vol.101 (6), p.2228-2244
Hauptverfasser: Sankar, Kaushik, Stynoski, Peter, Al‐Chaar, Ghassan K., Kriven, Waltraud M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2244
container_issue 6
container_start_page 2228
container_title Journal of the American Ceramic Society
container_volume 101
creator Sankar, Kaushik
Stynoski, Peter
Al‐Chaar, Ghassan K.
Kriven, Waltraud M.
description Alkali silicate activated slag and class F fly ash‐based binders are ambient curing, structural materials that are feasible replacements for ordinary Portland cement (OPC). They exhibit advantageous mechanical properties and less environmental impact than OPC. In this work, five sodium silicate activated slag‐fly ash binder mixtures were developed and their compressive and flexural strengths were studied as a function of curing temperature and time. It was found that the strongest mixture sets at ambient temperature and had a Weibull average flexural strength of 5.7 ± 1.5 MPa and Weibull average compressive strength of 60 ± 8 MPa at 28 days. While increasing the slag/fly ash ratio accelerated the strength development, the cure time was decreased due to the formation of calcium silicate hydrate (C–S–H), calcium aluminum silicate hydrate (C–A–S–H), and (Ca,Na) based geopolymer. The density, microstructure, and phase evolution of ambient‐cured, heat‐cured, and heat‐treated binders were studied using pycnometry, scanning electron microscopy, energy dispersive X‐ray spectroscopy (SEM‐EDS), and X‐ray diffraction (XRD). Heat‐cured binders were more dense than ambient‐cured binder. No new crystalline phases evolved through 28 days in ambient‐ or heat‐cured binders.
doi_str_mv 10.1111/jace.15391
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2020494973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020494973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3401-38abdb971aeac7fbedb4d6b507138567a2e92f975d1c98cd80b92312ad011ad93</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQxhdRsFYvPsGCN2nqziZpst5KqVoRLKjnMNndtFvyp-4mSm99BME37JO4tZ6dy8zAb75v-Ai5BDYEXzcrlHoIcSjgiPQgjiHgAkbHpMcY40GScnZKzpxb-RVEGvWIfWmU6SrqTGkktpqibM2HHxR1JS5226-i3FB0S5qbWmnrbukcbUtndLf9pnPbSO2cqRcDWhlpG9faTrad1QOKtaKVlkusvXBJ17ZZa9sa7c7JSYGl0xd_vU_e7qavk4fg6fl-Nhk_BTKMGARhirnKRQKoUSZFrlUeqVEeswTCNB4lyLXghUhiBVKkUqUsFzwEjooBoBJhn1wddL31e6ddm62aztbeMuOMs0hEIgk9dX2g9t87q4tsbU2FdpMBy_aZZvtMs99MPQwH-NOUevMPmT2OJ9PDzQ-Dj3xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020494973</pqid></control><display><type>article</type><title>Sodium silicate activated slag‐fly ash binders: Part I – Processing, microstructure, and mechanical properties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sankar, Kaushik ; Stynoski, Peter ; Al‐Chaar, Ghassan K. ; Kriven, Waltraud M.</creator><creatorcontrib>Sankar, Kaushik ; Stynoski, Peter ; Al‐Chaar, Ghassan K. ; Kriven, Waltraud M.</creatorcontrib><description>Alkali silicate activated slag and class F fly ash‐based binders are ambient curing, structural materials that are feasible replacements for ordinary Portland cement (OPC). They exhibit advantageous mechanical properties and less environmental impact than OPC. In this work, five sodium silicate activated slag‐fly ash binder mixtures were developed and their compressive and flexural strengths were studied as a function of curing temperature and time. It was found that the strongest mixture sets at ambient temperature and had a Weibull average flexural strength of 5.7 ± 1.5 MPa and Weibull average compressive strength of 60 ± 8 MPa at 28 days. While increasing the slag/fly ash ratio accelerated the strength development, the cure time was decreased due to the formation of calcium silicate hydrate (C–S–H), calcium aluminum silicate hydrate (C–A–S–H), and (Ca,Na) based geopolymer. The density, microstructure, and phase evolution of ambient‐cured, heat‐cured, and heat‐treated binders were studied using pycnometry, scanning electron microscopy, energy dispersive X‐ray spectroscopy (SEM‐EDS), and X‐ray diffraction (XRD). Heat‐cured binders were more dense than ambient‐cured binder. No new crystalline phases evolved through 28 days in ambient‐ or heat‐cured binders.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.15391</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; Ambient temperature ; Calcium aluminum silicates ; Calcium silicate hydrate ; Compressive strength ; Curing ; Electron microscopy ; Environmental impact ; Evolution ; Fly ash ; geopolymers ; Heat ; Mechanical properties ; Microstructure ; polycondensation ; Portland cements ; Pycnometry ; slag ; Sodium silicates ; strength</subject><ispartof>Journal of the American Ceramic Society, 2018-06, Vol.101 (6), p.2228-2244</ispartof><rights>2017 The American Ceramic Society</rights><rights>2018 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3401-38abdb971aeac7fbedb4d6b507138567a2e92f975d1c98cd80b92312ad011ad93</citedby><cites>FETCH-LOGICAL-c3401-38abdb971aeac7fbedb4d6b507138567a2e92f975d1c98cd80b92312ad011ad93</cites><orcidid>0000-0002-2983-5760 ; 0000-0001-8837-7854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.15391$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.15391$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Sankar, Kaushik</creatorcontrib><creatorcontrib>Stynoski, Peter</creatorcontrib><creatorcontrib>Al‐Chaar, Ghassan K.</creatorcontrib><creatorcontrib>Kriven, Waltraud M.</creatorcontrib><title>Sodium silicate activated slag‐fly ash binders: Part I – Processing, microstructure, and mechanical properties</title><title>Journal of the American Ceramic Society</title><description>Alkali silicate activated slag and class F fly ash‐based binders are ambient curing, structural materials that are feasible replacements for ordinary Portland cement (OPC). They exhibit advantageous mechanical properties and less environmental impact than OPC. In this work, five sodium silicate activated slag‐fly ash binder mixtures were developed and their compressive and flexural strengths were studied as a function of curing temperature and time. It was found that the strongest mixture sets at ambient temperature and had a Weibull average flexural strength of 5.7 ± 1.5 MPa and Weibull average compressive strength of 60 ± 8 MPa at 28 days. While increasing the slag/fly ash ratio accelerated the strength development, the cure time was decreased due to the formation of calcium silicate hydrate (C–S–H), calcium aluminum silicate hydrate (C–A–S–H), and (Ca,Na) based geopolymer. The density, microstructure, and phase evolution of ambient‐cured, heat‐cured, and heat‐treated binders were studied using pycnometry, scanning electron microscopy, energy dispersive X‐ray spectroscopy (SEM‐EDS), and X‐ray diffraction (XRD). Heat‐cured binders were more dense than ambient‐cured binder. No new crystalline phases evolved through 28 days in ambient‐ or heat‐cured binders.</description><subject>Aluminum</subject><subject>Ambient temperature</subject><subject>Calcium aluminum silicates</subject><subject>Calcium silicate hydrate</subject><subject>Compressive strength</subject><subject>Curing</subject><subject>Electron microscopy</subject><subject>Environmental impact</subject><subject>Evolution</subject><subject>Fly ash</subject><subject>geopolymers</subject><subject>Heat</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>polycondensation</subject><subject>Portland cements</subject><subject>Pycnometry</subject><subject>slag</subject><subject>Sodium silicates</subject><subject>strength</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQxhdRsFYvPsGCN2nqziZpst5KqVoRLKjnMNndtFvyp-4mSm99BME37JO4tZ6dy8zAb75v-Ai5BDYEXzcrlHoIcSjgiPQgjiHgAkbHpMcY40GScnZKzpxb-RVEGvWIfWmU6SrqTGkktpqibM2HHxR1JS5226-i3FB0S5qbWmnrbukcbUtndLf9pnPbSO2cqRcDWhlpG9faTrad1QOKtaKVlkusvXBJ17ZZa9sa7c7JSYGl0xd_vU_e7qavk4fg6fl-Nhk_BTKMGARhirnKRQKoUSZFrlUeqVEeswTCNB4lyLXghUhiBVKkUqUsFzwEjooBoBJhn1wddL31e6ddm62aztbeMuOMs0hEIgk9dX2g9t87q4tsbU2FdpMBy_aZZvtMs99MPQwH-NOUevMPmT2OJ9PDzQ-Dj3xQ</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Sankar, Kaushik</creator><creator>Stynoski, Peter</creator><creator>Al‐Chaar, Ghassan K.</creator><creator>Kriven, Waltraud M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2983-5760</orcidid><orcidid>https://orcid.org/0000-0001-8837-7854</orcidid></search><sort><creationdate>201806</creationdate><title>Sodium silicate activated slag‐fly ash binders: Part I – Processing, microstructure, and mechanical properties</title><author>Sankar, Kaushik ; Stynoski, Peter ; Al‐Chaar, Ghassan K. ; Kriven, Waltraud M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3401-38abdb971aeac7fbedb4d6b507138567a2e92f975d1c98cd80b92312ad011ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Ambient temperature</topic><topic>Calcium aluminum silicates</topic><topic>Calcium silicate hydrate</topic><topic>Compressive strength</topic><topic>Curing</topic><topic>Electron microscopy</topic><topic>Environmental impact</topic><topic>Evolution</topic><topic>Fly ash</topic><topic>geopolymers</topic><topic>Heat</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>polycondensation</topic><topic>Portland cements</topic><topic>Pycnometry</topic><topic>slag</topic><topic>Sodium silicates</topic><topic>strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sankar, Kaushik</creatorcontrib><creatorcontrib>Stynoski, Peter</creatorcontrib><creatorcontrib>Al‐Chaar, Ghassan K.</creatorcontrib><creatorcontrib>Kriven, Waltraud M.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sankar, Kaushik</au><au>Stynoski, Peter</au><au>Al‐Chaar, Ghassan K.</au><au>Kriven, Waltraud M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium silicate activated slag‐fly ash binders: Part I – Processing, microstructure, and mechanical properties</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2018-06</date><risdate>2018</risdate><volume>101</volume><issue>6</issue><spage>2228</spage><epage>2244</epage><pages>2228-2244</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Alkali silicate activated slag and class F fly ash‐based binders are ambient curing, structural materials that are feasible replacements for ordinary Portland cement (OPC). They exhibit advantageous mechanical properties and less environmental impact than OPC. In this work, five sodium silicate activated slag‐fly ash binder mixtures were developed and their compressive and flexural strengths were studied as a function of curing temperature and time. It was found that the strongest mixture sets at ambient temperature and had a Weibull average flexural strength of 5.7 ± 1.5 MPa and Weibull average compressive strength of 60 ± 8 MPa at 28 days. While increasing the slag/fly ash ratio accelerated the strength development, the cure time was decreased due to the formation of calcium silicate hydrate (C–S–H), calcium aluminum silicate hydrate (C–A–S–H), and (Ca,Na) based geopolymer. The density, microstructure, and phase evolution of ambient‐cured, heat‐cured, and heat‐treated binders were studied using pycnometry, scanning electron microscopy, energy dispersive X‐ray spectroscopy (SEM‐EDS), and X‐ray diffraction (XRD). Heat‐cured binders were more dense than ambient‐cured binder. No new crystalline phases evolved through 28 days in ambient‐ or heat‐cured binders.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.15391</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2983-5760</orcidid><orcidid>https://orcid.org/0000-0001-8837-7854</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2018-06, Vol.101 (6), p.2228-2244
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2020494973
source Wiley Online Library Journals Frontfile Complete
subjects Aluminum
Ambient temperature
Calcium aluminum silicates
Calcium silicate hydrate
Compressive strength
Curing
Electron microscopy
Environmental impact
Evolution
Fly ash
geopolymers
Heat
Mechanical properties
Microstructure
polycondensation
Portland cements
Pycnometry
slag
Sodium silicates
strength
title Sodium silicate activated slag‐fly ash binders: Part I – Processing, microstructure, and mechanical properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium%20silicate%20activated%20slag%E2%80%90fly%20ash%20binders:%20Part%20I%20%E2%80%93%20Processing,%20microstructure,%20and%20mechanical%20properties&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Sankar,%20Kaushik&rft.date=2018-06&rft.volume=101&rft.issue=6&rft.spage=2228&rft.epage=2244&rft.pages=2228-2244&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.15391&rft_dat=%3Cproquest_cross%3E2020494973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020494973&rft_id=info:pmid/&rfr_iscdi=true