Sodium silicate activated slag‐fly ash binders: Part I – Processing, microstructure, and mechanical properties
Alkali silicate activated slag and class F fly ash‐based binders are ambient curing, structural materials that are feasible replacements for ordinary Portland cement (OPC). They exhibit advantageous mechanical properties and less environmental impact than OPC. In this work, five sodium silicate acti...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2018-06, Vol.101 (6), p.2228-2244 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2244 |
---|---|
container_issue | 6 |
container_start_page | 2228 |
container_title | Journal of the American Ceramic Society |
container_volume | 101 |
creator | Sankar, Kaushik Stynoski, Peter Al‐Chaar, Ghassan K. Kriven, Waltraud M. |
description | Alkali silicate activated slag and class F fly ash‐based binders are ambient curing, structural materials that are feasible replacements for ordinary Portland cement (OPC). They exhibit advantageous mechanical properties and less environmental impact than OPC. In this work, five sodium silicate activated slag‐fly ash binder mixtures were developed and their compressive and flexural strengths were studied as a function of curing temperature and time. It was found that the strongest mixture sets at ambient temperature and had a Weibull average flexural strength of 5.7 ± 1.5 MPa and Weibull average compressive strength of 60 ± 8 MPa at 28 days. While increasing the slag/fly ash ratio accelerated the strength development, the cure time was decreased due to the formation of calcium silicate hydrate (C–S–H), calcium aluminum silicate hydrate (C–A–S–H), and (Ca,Na) based geopolymer. The density, microstructure, and phase evolution of ambient‐cured, heat‐cured, and heat‐treated binders were studied using pycnometry, scanning electron microscopy, energy dispersive X‐ray spectroscopy (SEM‐EDS), and X‐ray diffraction (XRD). Heat‐cured binders were more dense than ambient‐cured binder. No new crystalline phases evolved through 28 days in ambient‐ or heat‐cured binders. |
doi_str_mv | 10.1111/jace.15391 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2020494973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020494973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3401-38abdb971aeac7fbedb4d6b507138567a2e92f975d1c98cd80b92312ad011ad93</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQxhdRsFYvPsGCN2nqziZpst5KqVoRLKjnMNndtFvyp-4mSm99BME37JO4tZ6dy8zAb75v-Ai5BDYEXzcrlHoIcSjgiPQgjiHgAkbHpMcY40GScnZKzpxb-RVEGvWIfWmU6SrqTGkktpqibM2HHxR1JS5226-i3FB0S5qbWmnrbukcbUtndLf9pnPbSO2cqRcDWhlpG9faTrad1QOKtaKVlkusvXBJ17ZZa9sa7c7JSYGl0xd_vU_e7qavk4fg6fl-Nhk_BTKMGARhirnKRQKoUSZFrlUeqVEeswTCNB4lyLXghUhiBVKkUqUsFzwEjooBoBJhn1wddL31e6ddm62aztbeMuOMs0hEIgk9dX2g9t87q4tsbU2FdpMBy_aZZvtMs99MPQwH-NOUevMPmT2OJ9PDzQ-Dj3xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020494973</pqid></control><display><type>article</type><title>Sodium silicate activated slag‐fly ash binders: Part I – Processing, microstructure, and mechanical properties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sankar, Kaushik ; Stynoski, Peter ; Al‐Chaar, Ghassan K. ; Kriven, Waltraud M.</creator><creatorcontrib>Sankar, Kaushik ; Stynoski, Peter ; Al‐Chaar, Ghassan K. ; Kriven, Waltraud M.</creatorcontrib><description>Alkali silicate activated slag and class F fly ash‐based binders are ambient curing, structural materials that are feasible replacements for ordinary Portland cement (OPC). They exhibit advantageous mechanical properties and less environmental impact than OPC. In this work, five sodium silicate activated slag‐fly ash binder mixtures were developed and their compressive and flexural strengths were studied as a function of curing temperature and time. It was found that the strongest mixture sets at ambient temperature and had a Weibull average flexural strength of 5.7 ± 1.5 MPa and Weibull average compressive strength of 60 ± 8 MPa at 28 days. While increasing the slag/fly ash ratio accelerated the strength development, the cure time was decreased due to the formation of calcium silicate hydrate (C–S–H), calcium aluminum silicate hydrate (C–A–S–H), and (Ca,Na) based geopolymer. The density, microstructure, and phase evolution of ambient‐cured, heat‐cured, and heat‐treated binders were studied using pycnometry, scanning electron microscopy, energy dispersive X‐ray spectroscopy (SEM‐EDS), and X‐ray diffraction (XRD). Heat‐cured binders were more dense than ambient‐cured binder. No new crystalline phases evolved through 28 days in ambient‐ or heat‐cured binders.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.15391</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; Ambient temperature ; Calcium aluminum silicates ; Calcium silicate hydrate ; Compressive strength ; Curing ; Electron microscopy ; Environmental impact ; Evolution ; Fly ash ; geopolymers ; Heat ; Mechanical properties ; Microstructure ; polycondensation ; Portland cements ; Pycnometry ; slag ; Sodium silicates ; strength</subject><ispartof>Journal of the American Ceramic Society, 2018-06, Vol.101 (6), p.2228-2244</ispartof><rights>2017 The American Ceramic Society</rights><rights>2018 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3401-38abdb971aeac7fbedb4d6b507138567a2e92f975d1c98cd80b92312ad011ad93</citedby><cites>FETCH-LOGICAL-c3401-38abdb971aeac7fbedb4d6b507138567a2e92f975d1c98cd80b92312ad011ad93</cites><orcidid>0000-0002-2983-5760 ; 0000-0001-8837-7854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.15391$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.15391$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Sankar, Kaushik</creatorcontrib><creatorcontrib>Stynoski, Peter</creatorcontrib><creatorcontrib>Al‐Chaar, Ghassan K.</creatorcontrib><creatorcontrib>Kriven, Waltraud M.</creatorcontrib><title>Sodium silicate activated slag‐fly ash binders: Part I – Processing, microstructure, and mechanical properties</title><title>Journal of the American Ceramic Society</title><description>Alkali silicate activated slag and class F fly ash‐based binders are ambient curing, structural materials that are feasible replacements for ordinary Portland cement (OPC). They exhibit advantageous mechanical properties and less environmental impact than OPC. In this work, five sodium silicate activated slag‐fly ash binder mixtures were developed and their compressive and flexural strengths were studied as a function of curing temperature and time. It was found that the strongest mixture sets at ambient temperature and had a Weibull average flexural strength of 5.7 ± 1.5 MPa and Weibull average compressive strength of 60 ± 8 MPa at 28 days. While increasing the slag/fly ash ratio accelerated the strength development, the cure time was decreased due to the formation of calcium silicate hydrate (C–S–H), calcium aluminum silicate hydrate (C–A–S–H), and (Ca,Na) based geopolymer. The density, microstructure, and phase evolution of ambient‐cured, heat‐cured, and heat‐treated binders were studied using pycnometry, scanning electron microscopy, energy dispersive X‐ray spectroscopy (SEM‐EDS), and X‐ray diffraction (XRD). Heat‐cured binders were more dense than ambient‐cured binder. No new crystalline phases evolved through 28 days in ambient‐ or heat‐cured binders.</description><subject>Aluminum</subject><subject>Ambient temperature</subject><subject>Calcium aluminum silicates</subject><subject>Calcium silicate hydrate</subject><subject>Compressive strength</subject><subject>Curing</subject><subject>Electron microscopy</subject><subject>Environmental impact</subject><subject>Evolution</subject><subject>Fly ash</subject><subject>geopolymers</subject><subject>Heat</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>polycondensation</subject><subject>Portland cements</subject><subject>Pycnometry</subject><subject>slag</subject><subject>Sodium silicates</subject><subject>strength</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQxhdRsFYvPsGCN2nqziZpst5KqVoRLKjnMNndtFvyp-4mSm99BME37JO4tZ6dy8zAb75v-Ai5BDYEXzcrlHoIcSjgiPQgjiHgAkbHpMcY40GScnZKzpxb-RVEGvWIfWmU6SrqTGkktpqibM2HHxR1JS5226-i3FB0S5qbWmnrbukcbUtndLf9pnPbSO2cqRcDWhlpG9faTrad1QOKtaKVlkusvXBJ17ZZa9sa7c7JSYGl0xd_vU_e7qavk4fg6fl-Nhk_BTKMGARhirnKRQKoUSZFrlUeqVEeswTCNB4lyLXghUhiBVKkUqUsFzwEjooBoBJhn1wddL31e6ddm62aztbeMuOMs0hEIgk9dX2g9t87q4tsbU2FdpMBy_aZZvtMs99MPQwH-NOUevMPmT2OJ9PDzQ-Dj3xQ</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Sankar, Kaushik</creator><creator>Stynoski, Peter</creator><creator>Al‐Chaar, Ghassan K.</creator><creator>Kriven, Waltraud M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2983-5760</orcidid><orcidid>https://orcid.org/0000-0001-8837-7854</orcidid></search><sort><creationdate>201806</creationdate><title>Sodium silicate activated slag‐fly ash binders: Part I – Processing, microstructure, and mechanical properties</title><author>Sankar, Kaushik ; Stynoski, Peter ; Al‐Chaar, Ghassan K. ; Kriven, Waltraud M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3401-38abdb971aeac7fbedb4d6b507138567a2e92f975d1c98cd80b92312ad011ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Ambient temperature</topic><topic>Calcium aluminum silicates</topic><topic>Calcium silicate hydrate</topic><topic>Compressive strength</topic><topic>Curing</topic><topic>Electron microscopy</topic><topic>Environmental impact</topic><topic>Evolution</topic><topic>Fly ash</topic><topic>geopolymers</topic><topic>Heat</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>polycondensation</topic><topic>Portland cements</topic><topic>Pycnometry</topic><topic>slag</topic><topic>Sodium silicates</topic><topic>strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sankar, Kaushik</creatorcontrib><creatorcontrib>Stynoski, Peter</creatorcontrib><creatorcontrib>Al‐Chaar, Ghassan K.</creatorcontrib><creatorcontrib>Kriven, Waltraud M.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sankar, Kaushik</au><au>Stynoski, Peter</au><au>Al‐Chaar, Ghassan K.</au><au>Kriven, Waltraud M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium silicate activated slag‐fly ash binders: Part I – Processing, microstructure, and mechanical properties</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2018-06</date><risdate>2018</risdate><volume>101</volume><issue>6</issue><spage>2228</spage><epage>2244</epage><pages>2228-2244</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Alkali silicate activated slag and class F fly ash‐based binders are ambient curing, structural materials that are feasible replacements for ordinary Portland cement (OPC). They exhibit advantageous mechanical properties and less environmental impact than OPC. In this work, five sodium silicate activated slag‐fly ash binder mixtures were developed and their compressive and flexural strengths were studied as a function of curing temperature and time. It was found that the strongest mixture sets at ambient temperature and had a Weibull average flexural strength of 5.7 ± 1.5 MPa and Weibull average compressive strength of 60 ± 8 MPa at 28 days. While increasing the slag/fly ash ratio accelerated the strength development, the cure time was decreased due to the formation of calcium silicate hydrate (C–S–H), calcium aluminum silicate hydrate (C–A–S–H), and (Ca,Na) based geopolymer. The density, microstructure, and phase evolution of ambient‐cured, heat‐cured, and heat‐treated binders were studied using pycnometry, scanning electron microscopy, energy dispersive X‐ray spectroscopy (SEM‐EDS), and X‐ray diffraction (XRD). Heat‐cured binders were more dense than ambient‐cured binder. No new crystalline phases evolved through 28 days in ambient‐ or heat‐cured binders.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.15391</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2983-5760</orcidid><orcidid>https://orcid.org/0000-0001-8837-7854</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2018-06, Vol.101 (6), p.2228-2244 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2020494973 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aluminum Ambient temperature Calcium aluminum silicates Calcium silicate hydrate Compressive strength Curing Electron microscopy Environmental impact Evolution Fly ash geopolymers Heat Mechanical properties Microstructure polycondensation Portland cements Pycnometry slag Sodium silicates strength |
title | Sodium silicate activated slag‐fly ash binders: Part I – Processing, microstructure, and mechanical properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium%20silicate%20activated%20slag%E2%80%90fly%20ash%20binders:%20Part%20I%20%E2%80%93%20Processing,%20microstructure,%20and%20mechanical%20properties&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Sankar,%20Kaushik&rft.date=2018-06&rft.volume=101&rft.issue=6&rft.spage=2228&rft.epage=2244&rft.pages=2228-2244&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.15391&rft_dat=%3Cproquest_cross%3E2020494973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020494973&rft_id=info:pmid/&rfr_iscdi=true |