Ultrahigh‐temperature metamorphism in the Tuguiwula area, Khondalite Belt, North China Craton

In this study, sapphirine‐bearing granulites and sapphirine‐absent garnet–sillimanite gneisses from the Tuguiwula area in the eastern segment of the Khondalite Belt, North China Craton (NCC) are interpreted to show a P–T evolution involving cooling at pressures of 8–9 kbar from >960°C to the soli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of metamorphic geology 2018-05, Vol.36 (4), p.489-509
Hauptverfasser: Li, Xianwei, Wei, Chunjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 509
container_issue 4
container_start_page 489
container_title Journal of metamorphic geology
container_volume 36
creator Li, Xianwei
Wei, Chunjing
description In this study, sapphirine‐bearing granulites and sapphirine‐absent garnet–sillimanite gneisses from the Tuguiwula area in the eastern segment of the Khondalite Belt, North China Craton (NCC) are interpreted to show a P–T evolution involving cooling at pressures of 8–9 kbar from >960°C to the solidus (~820°C) and late subsolidus decompression. This interpretation is based on the sequence of mineral appearance and thermodynamic modelling of phase equilibria. Sapphirine is observed to coexist with spinel within the peak assemblages. This observation conflicts with the traditional view that spinel generally appears prior to sapphirine and thus indicates pre‐Tmax compression. For ultrahigh‐temperature (UHT) metapelites at Tuguiwula, a clockwise P–T path may be more likely, which would be consistent with the clockwise P–T evolution of the extensive “normal” granulites (Tmax
doi_str_mv 10.1111/jmg.12301
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2020446516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020446516</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3551-a9b4cade7b1e466622849d4d3efdaee767394ec9f6b00e937ba6aa759b569dbc3</originalsourceid><addsrcrecordid>eNp1kLtOw0AQRVcIJEKg4A9WokLCyb68ZkuwIDwCNEm9GtuT2JEfYb1WlI5P4Bv5Egym5TbTnLlXOoScczbhfaabaj3hQjJ-QEY8FGHAJVeHZMSEloEywhyTk7bdMMalkGpE7LL0DvJinX99fHqstujAdw5phR6qxm3zoq1oUVOfI110667YdSVQcAhX9Dlv6gzKwiO9xdJf0dfG-ZzGeVEDjfuipj4lRysoWzz7u2OyvL9bxA_B_G32GN_MA5BhyAMwiUohwyjhqLTWQlwrk6lM4ioDxEhH0ihMzUonjKGRUQIaIApNEmqTJakck4uhd-ua9w5bbzdN5-p-0gommFI65LqnLgcqdU3bOlzZrSsqcHvLmf3xZ3t_9tdfz04HdleUuP8ftE8vs-HjG6zec2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020446516</pqid></control><display><type>article</type><title>Ultrahigh‐temperature metamorphism in the Tuguiwula area, Khondalite Belt, North China Craton</title><source>Access via Wiley Online Library</source><creator>Li, Xianwei ; Wei, Chunjing</creator><creatorcontrib>Li, Xianwei ; Wei, Chunjing</creatorcontrib><description>In this study, sapphirine‐bearing granulites and sapphirine‐absent garnet–sillimanite gneisses from the Tuguiwula area in the eastern segment of the Khondalite Belt, North China Craton (NCC) are interpreted to show a P–T evolution involving cooling at pressures of 8–9 kbar from &gt;960°C to the solidus (~820°C) and late subsolidus decompression. This interpretation is based on the sequence of mineral appearance and thermodynamic modelling of phase equilibria. Sapphirine is observed to coexist with spinel within the peak assemblages. This observation conflicts with the traditional view that spinel generally appears prior to sapphirine and thus indicates pre‐Tmax compression. For ultrahigh‐temperature (UHT) metapelites at Tuguiwula, a clockwise P–T path may be more likely, which would be consistent with the clockwise P–T evolution of the extensive “normal” granulites (Tmax &lt;900°C) and UHT granulites at other localities in the eastern segment of the Khondalite Belt. At Tuguiwula, for UHT metapelites with low bulk‐rock Mg/(Mg+FeT), the oxidation state/Fe3+ content is interpreted to be a significant factor in controlling the mineral assemblages. We find that these compositions tend to contain sapphirine under oxidized conditions but spinel (without sapphirine) under reduced conditions. This difference may account for the simultaneous presence of both sapphirine‐bearing UHT granulites and sapphirine‐absent garnet–sillimanite UHT gneisses at Tuguiwula. LA‐ICP‐MS U–Pb dating of metamorphic zircon in the UHT metapelites yields mean 207Pb/206Pb ages of c. 1.92 Ga (two samples), which are interpreted to record the timing of cooling of the UHT rocks to the solidus. The UHT metamorphism is interpreted to have been generated by mantle upwelling and emplacement of mafic magmas within a post‐orogenic setting.</description><identifier>ISSN: 0263-4929</identifier><identifier>EISSN: 1525-1314</identifier><identifier>DOI: 10.1111/jmg.12301</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Compression ; Conflicts ; Cooling ; Cratons ; Decompression ; Evolution ; Garnet ; Iron ; Khondalite Belt ; Lead isotopes ; Magma ; Metamorphism ; Metamorphism (geology) ; Mineral assemblages ; Modelling ; North China Craton ; Ocean circulation ; Oxidation ; Phase equilibria ; phase equilibrium modelling ; Sillimanite ; Solidus ; Spinel ; Temperature ; Thermodynamic models ; Ultrahigh temperature ; ultrahigh‐temperature metamorphism ; Upwelling ; Valence ; Zircon ; Zirconium</subject><ispartof>Journal of metamorphic geology, 2018-05, Vol.36 (4), p.489-509</ispartof><rights>2017 John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2018 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3551-a9b4cade7b1e466622849d4d3efdaee767394ec9f6b00e937ba6aa759b569dbc3</citedby><cites>FETCH-LOGICAL-a3551-a9b4cade7b1e466622849d4d3efdaee767394ec9f6b00e937ba6aa759b569dbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjmg.12301$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjmg.12301$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Li, Xianwei</creatorcontrib><creatorcontrib>Wei, Chunjing</creatorcontrib><title>Ultrahigh‐temperature metamorphism in the Tuguiwula area, Khondalite Belt, North China Craton</title><title>Journal of metamorphic geology</title><description>In this study, sapphirine‐bearing granulites and sapphirine‐absent garnet–sillimanite gneisses from the Tuguiwula area in the eastern segment of the Khondalite Belt, North China Craton (NCC) are interpreted to show a P–T evolution involving cooling at pressures of 8–9 kbar from &gt;960°C to the solidus (~820°C) and late subsolidus decompression. This interpretation is based on the sequence of mineral appearance and thermodynamic modelling of phase equilibria. Sapphirine is observed to coexist with spinel within the peak assemblages. This observation conflicts with the traditional view that spinel generally appears prior to sapphirine and thus indicates pre‐Tmax compression. For ultrahigh‐temperature (UHT) metapelites at Tuguiwula, a clockwise P–T path may be more likely, which would be consistent with the clockwise P–T evolution of the extensive “normal” granulites (Tmax &lt;900°C) and UHT granulites at other localities in the eastern segment of the Khondalite Belt. At Tuguiwula, for UHT metapelites with low bulk‐rock Mg/(Mg+FeT), the oxidation state/Fe3+ content is interpreted to be a significant factor in controlling the mineral assemblages. We find that these compositions tend to contain sapphirine under oxidized conditions but spinel (without sapphirine) under reduced conditions. This difference may account for the simultaneous presence of both sapphirine‐bearing UHT granulites and sapphirine‐absent garnet–sillimanite UHT gneisses at Tuguiwula. LA‐ICP‐MS U–Pb dating of metamorphic zircon in the UHT metapelites yields mean 207Pb/206Pb ages of c. 1.92 Ga (two samples), which are interpreted to record the timing of cooling of the UHT rocks to the solidus. The UHT metamorphism is interpreted to have been generated by mantle upwelling and emplacement of mafic magmas within a post‐orogenic setting.</description><subject>Compression</subject><subject>Conflicts</subject><subject>Cooling</subject><subject>Cratons</subject><subject>Decompression</subject><subject>Evolution</subject><subject>Garnet</subject><subject>Iron</subject><subject>Khondalite Belt</subject><subject>Lead isotopes</subject><subject>Magma</subject><subject>Metamorphism</subject><subject>Metamorphism (geology)</subject><subject>Mineral assemblages</subject><subject>Modelling</subject><subject>North China Craton</subject><subject>Ocean circulation</subject><subject>Oxidation</subject><subject>Phase equilibria</subject><subject>phase equilibrium modelling</subject><subject>Sillimanite</subject><subject>Solidus</subject><subject>Spinel</subject><subject>Temperature</subject><subject>Thermodynamic models</subject><subject>Ultrahigh temperature</subject><subject>ultrahigh‐temperature metamorphism</subject><subject>Upwelling</subject><subject>Valence</subject><subject>Zircon</subject><subject>Zirconium</subject><issn>0263-4929</issn><issn>1525-1314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOw0AQRVcIJEKg4A9WokLCyb68ZkuwIDwCNEm9GtuT2JEfYb1WlI5P4Bv5Egym5TbTnLlXOoScczbhfaabaj3hQjJ-QEY8FGHAJVeHZMSEloEywhyTk7bdMMalkGpE7LL0DvJinX99fHqstujAdw5phR6qxm3zoq1oUVOfI110667YdSVQcAhX9Dlv6gzKwiO9xdJf0dfG-ZzGeVEDjfuipj4lRysoWzz7u2OyvL9bxA_B_G32GN_MA5BhyAMwiUohwyjhqLTWQlwrk6lM4ioDxEhH0ihMzUonjKGRUQIaIApNEmqTJakck4uhd-ua9w5bbzdN5-p-0gommFI65LqnLgcqdU3bOlzZrSsqcHvLmf3xZ3t_9tdfz04HdleUuP8ftE8vs-HjG6zec2k</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Li, Xianwei</creator><creator>Wei, Chunjing</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>201805</creationdate><title>Ultrahigh‐temperature metamorphism in the Tuguiwula area, Khondalite Belt, North China Craton</title><author>Li, Xianwei ; Wei, Chunjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3551-a9b4cade7b1e466622849d4d3efdaee767394ec9f6b00e937ba6aa759b569dbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Compression</topic><topic>Conflicts</topic><topic>Cooling</topic><topic>Cratons</topic><topic>Decompression</topic><topic>Evolution</topic><topic>Garnet</topic><topic>Iron</topic><topic>Khondalite Belt</topic><topic>Lead isotopes</topic><topic>Magma</topic><topic>Metamorphism</topic><topic>Metamorphism (geology)</topic><topic>Mineral assemblages</topic><topic>Modelling</topic><topic>North China Craton</topic><topic>Ocean circulation</topic><topic>Oxidation</topic><topic>Phase equilibria</topic><topic>phase equilibrium modelling</topic><topic>Sillimanite</topic><topic>Solidus</topic><topic>Spinel</topic><topic>Temperature</topic><topic>Thermodynamic models</topic><topic>Ultrahigh temperature</topic><topic>ultrahigh‐temperature metamorphism</topic><topic>Upwelling</topic><topic>Valence</topic><topic>Zircon</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xianwei</creatorcontrib><creatorcontrib>Wei, Chunjing</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of metamorphic geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xianwei</au><au>Wei, Chunjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh‐temperature metamorphism in the Tuguiwula area, Khondalite Belt, North China Craton</atitle><jtitle>Journal of metamorphic geology</jtitle><date>2018-05</date><risdate>2018</risdate><volume>36</volume><issue>4</issue><spage>489</spage><epage>509</epage><pages>489-509</pages><issn>0263-4929</issn><eissn>1525-1314</eissn><abstract>In this study, sapphirine‐bearing granulites and sapphirine‐absent garnet–sillimanite gneisses from the Tuguiwula area in the eastern segment of the Khondalite Belt, North China Craton (NCC) are interpreted to show a P–T evolution involving cooling at pressures of 8–9 kbar from &gt;960°C to the solidus (~820°C) and late subsolidus decompression. This interpretation is based on the sequence of mineral appearance and thermodynamic modelling of phase equilibria. Sapphirine is observed to coexist with spinel within the peak assemblages. This observation conflicts with the traditional view that spinel generally appears prior to sapphirine and thus indicates pre‐Tmax compression. For ultrahigh‐temperature (UHT) metapelites at Tuguiwula, a clockwise P–T path may be more likely, which would be consistent with the clockwise P–T evolution of the extensive “normal” granulites (Tmax &lt;900°C) and UHT granulites at other localities in the eastern segment of the Khondalite Belt. At Tuguiwula, for UHT metapelites with low bulk‐rock Mg/(Mg+FeT), the oxidation state/Fe3+ content is interpreted to be a significant factor in controlling the mineral assemblages. We find that these compositions tend to contain sapphirine under oxidized conditions but spinel (without sapphirine) under reduced conditions. This difference may account for the simultaneous presence of both sapphirine‐bearing UHT granulites and sapphirine‐absent garnet–sillimanite UHT gneisses at Tuguiwula. LA‐ICP‐MS U–Pb dating of metamorphic zircon in the UHT metapelites yields mean 207Pb/206Pb ages of c. 1.92 Ga (two samples), which are interpreted to record the timing of cooling of the UHT rocks to the solidus. The UHT metamorphism is interpreted to have been generated by mantle upwelling and emplacement of mafic magmas within a post‐orogenic setting.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jmg.12301</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-4929
ispartof Journal of metamorphic geology, 2018-05, Vol.36 (4), p.489-509
issn 0263-4929
1525-1314
language eng
recordid cdi_proquest_journals_2020446516
source Access via Wiley Online Library
subjects Compression
Conflicts
Cooling
Cratons
Decompression
Evolution
Garnet
Iron
Khondalite Belt
Lead isotopes
Magma
Metamorphism
Metamorphism (geology)
Mineral assemblages
Modelling
North China Craton
Ocean circulation
Oxidation
Phase equilibria
phase equilibrium modelling
Sillimanite
Solidus
Spinel
Temperature
Thermodynamic models
Ultrahigh temperature
ultrahigh‐temperature metamorphism
Upwelling
Valence
Zircon
Zirconium
title Ultrahigh‐temperature metamorphism in the Tuguiwula area, Khondalite Belt, North China Craton
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A01%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh%E2%80%90temperature%20metamorphism%20in%20the%20Tuguiwula%20area,%20Khondalite%20Belt,%20North%20China%20Craton&rft.jtitle=Journal%20of%20metamorphic%20geology&rft.au=Li,%20Xianwei&rft.date=2018-05&rft.volume=36&rft.issue=4&rft.spage=489&rft.epage=509&rft.pages=489-509&rft.issn=0263-4929&rft.eissn=1525-1314&rft_id=info:doi/10.1111/jmg.12301&rft_dat=%3Cproquest_cross%3E2020446516%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020446516&rft_id=info:pmid/&rfr_iscdi=true