Sample selection models for discrete and other non-Gaussian response variables

Consider observation of a phenomenon of interest subject to selective sampling due to a censoring mechanism regulated by some other variable. In this context, an extensive literature exists linked to the so-called Heckman selection model. A great deal of this work has been developed under Gaussian a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods & applications 2019-03, Vol.28 (1), p.27-56
Hauptverfasser: Azzalini, Adelchi, Kim, Hyoung-Moon, Kim, Hea-Jung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 27
container_title Statistical methods & applications
container_volume 28
creator Azzalini, Adelchi
Kim, Hyoung-Moon
Kim, Hea-Jung
description Consider observation of a phenomenon of interest subject to selective sampling due to a censoring mechanism regulated by some other variable. In this context, an extensive literature exists linked to the so-called Heckman selection model. A great deal of this work has been developed under Gaussian assumption of the underlying probability distributions; considerably less work has dealt with other distributions. We examine a general construction which encompasses a variety of distributions and allows various options of the selection mechanism, focusing especially on the case of discrete response. Inferential methods based on the pertaining likelihood function are developed.
doi_str_mv 10.1007/s10260-018-0427-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2019946332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019946332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-f1d3e7422cc3366ac9c0fd2bb35af8b69451ecfa8e55c4e624b69faed6b2f3b83</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9F8NdseZdFVWPSggreQphPt0k1qpiv47-1awZOnGYbnfQceQs4FvxScL65QcGk446JkXMsFEwdkJoxQrCrF6-HPXjJZCH5MThA3nCultJqRhye37TugCB34oU2RblMDHdKQMm1a9BkGoC42NA3vkGlMka3cDrF1kWbAPkUE-uly6-oO8JQcBdchnP3OOXm5vXle3rH14-p-eb1mXulqYEE0ChZaSu-VMsb5yvPQyLpWhQtlbSpdCPDBlVAUXoORerwFB42pZVB1qebkYurtc_rYAQ52k3Y5ji-t5KKqtFFKjpSYKJ8TYoZg-9xuXf6ygtu9Njtps6M2u9dmxZiRUwZHNr5B_mv-P_QNB2ZxBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019946332</pqid></control><display><type>article</type><title>Sample selection models for discrete and other non-Gaussian response variables</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Azzalini, Adelchi ; Kim, Hyoung-Moon ; Kim, Hea-Jung</creator><creatorcontrib>Azzalini, Adelchi ; Kim, Hyoung-Moon ; Kim, Hea-Jung</creatorcontrib><description>Consider observation of a phenomenon of interest subject to selective sampling due to a censoring mechanism regulated by some other variable. In this context, an extensive literature exists linked to the so-called Heckman selection model. A great deal of this work has been developed under Gaussian assumption of the underlying probability distributions; considerably less work has dealt with other distributions. We examine a general construction which encompasses a variety of distributions and allows various options of the selection mechanism, focusing especially on the case of discrete response. Inferential methods based on the pertaining likelihood function are developed.</description><identifier>ISSN: 1618-2510</identifier><identifier>EISSN: 1613-981X</identifier><identifier>DOI: 10.1007/s10260-018-0427-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bias ; Chemistry and Earth Sciences ; Computer Science ; Economics ; Expected values ; Finance ; Health Sciences ; Humanities ; Insurance ; Law ; Management ; Mathematics and Statistics ; Medicine ; Normal distribution ; Original Paper ; Physics ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Statistics for Engineering ; Statistics for Life Sciences ; Statistics for Social Sciences ; Variables ; Wages &amp; salaries</subject><ispartof>Statistical methods &amp; applications, 2019-03, Vol.28 (1), p.27-56</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Statistical Methods &amp; Applications is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-f1d3e7422cc3366ac9c0fd2bb35af8b69451ecfa8e55c4e624b69faed6b2f3b83</citedby><cites>FETCH-LOGICAL-c349t-f1d3e7422cc3366ac9c0fd2bb35af8b69451ecfa8e55c4e624b69faed6b2f3b83</cites><orcidid>0000-0002-6014-5207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10260-018-0427-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10260-018-0427-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Azzalini, Adelchi</creatorcontrib><creatorcontrib>Kim, Hyoung-Moon</creatorcontrib><creatorcontrib>Kim, Hea-Jung</creatorcontrib><title>Sample selection models for discrete and other non-Gaussian response variables</title><title>Statistical methods &amp; applications</title><addtitle>Stat Methods Appl</addtitle><description>Consider observation of a phenomenon of interest subject to selective sampling due to a censoring mechanism regulated by some other variable. In this context, an extensive literature exists linked to the so-called Heckman selection model. A great deal of this work has been developed under Gaussian assumption of the underlying probability distributions; considerably less work has dealt with other distributions. We examine a general construction which encompasses a variety of distributions and allows various options of the selection mechanism, focusing especially on the case of discrete response. Inferential methods based on the pertaining likelihood function are developed.</description><subject>Bias</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Expected values</subject><subject>Finance</subject><subject>Health Sciences</subject><subject>Humanities</subject><subject>Insurance</subject><subject>Law</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Normal distribution</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Statistics for Social Sciences</subject><subject>Variables</subject><subject>Wages &amp; salaries</subject><issn>1618-2510</issn><issn>1613-981X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9F8NdseZdFVWPSggreQphPt0k1qpiv47-1awZOnGYbnfQceQs4FvxScL65QcGk446JkXMsFEwdkJoxQrCrF6-HPXjJZCH5MThA3nCultJqRhye37TugCB34oU2RblMDHdKQMm1a9BkGoC42NA3vkGlMka3cDrF1kWbAPkUE-uly6-oO8JQcBdchnP3OOXm5vXle3rH14-p-eb1mXulqYEE0ChZaSu-VMsb5yvPQyLpWhQtlbSpdCPDBlVAUXoORerwFB42pZVB1qebkYurtc_rYAQ52k3Y5ji-t5KKqtFFKjpSYKJ8TYoZg-9xuXf6ygtu9Njtps6M2u9dmxZiRUwZHNr5B_mv-P_QNB2ZxBw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Azzalini, Adelchi</creator><creator>Kim, Hyoung-Moon</creator><creator>Kim, Hea-Jung</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6014-5207</orcidid></search><sort><creationdate>20190301</creationdate><title>Sample selection models for discrete and other non-Gaussian response variables</title><author>Azzalini, Adelchi ; Kim, Hyoung-Moon ; Kim, Hea-Jung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-f1d3e7422cc3366ac9c0fd2bb35af8b69451ecfa8e55c4e624b69faed6b2f3b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bias</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Expected values</topic><topic>Finance</topic><topic>Health Sciences</topic><topic>Humanities</topic><topic>Insurance</topic><topic>Law</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Normal distribution</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Statistics for Social Sciences</topic><topic>Variables</topic><topic>Wages &amp; salaries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azzalini, Adelchi</creatorcontrib><creatorcontrib>Kim, Hyoung-Moon</creatorcontrib><creatorcontrib>Kim, Hea-Jung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Statistical methods &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azzalini, Adelchi</au><au>Kim, Hyoung-Moon</au><au>Kim, Hea-Jung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample selection models for discrete and other non-Gaussian response variables</atitle><jtitle>Statistical methods &amp; applications</jtitle><stitle>Stat Methods Appl</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>28</volume><issue>1</issue><spage>27</spage><epage>56</epage><pages>27-56</pages><issn>1618-2510</issn><eissn>1613-981X</eissn><abstract>Consider observation of a phenomenon of interest subject to selective sampling due to a censoring mechanism regulated by some other variable. In this context, an extensive literature exists linked to the so-called Heckman selection model. A great deal of this work has been developed under Gaussian assumption of the underlying probability distributions; considerably less work has dealt with other distributions. We examine a general construction which encompasses a variety of distributions and allows various options of the selection mechanism, focusing especially on the case of discrete response. Inferential methods based on the pertaining likelihood function are developed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10260-018-0427-1</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-6014-5207</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1618-2510
ispartof Statistical methods & applications, 2019-03, Vol.28 (1), p.27-56
issn 1618-2510
1613-981X
language eng
recordid cdi_proquest_journals_2019946332
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Bias
Chemistry and Earth Sciences
Computer Science
Economics
Expected values
Finance
Health Sciences
Humanities
Insurance
Law
Management
Mathematics and Statistics
Medicine
Normal distribution
Original Paper
Physics
Statistical Theory and Methods
Statistics
Statistics for Business
Statistics for Engineering
Statistics for Life Sciences
Statistics for Social Sciences
Variables
Wages & salaries
title Sample selection models for discrete and other non-Gaussian response variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample%20selection%20models%20for%20discrete%20and%20other%20non-Gaussian%20response%20variables&rft.jtitle=Statistical%20methods%20&%20applications&rft.au=Azzalini,%20Adelchi&rft.date=2019-03-01&rft.volume=28&rft.issue=1&rft.spage=27&rft.epage=56&rft.pages=27-56&rft.issn=1618-2510&rft.eissn=1613-981X&rft_id=info:doi/10.1007/s10260-018-0427-1&rft_dat=%3Cproquest_cross%3E2019946332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019946332&rft_id=info:pmid/&rfr_iscdi=true