Sample selection models for discrete and other non-Gaussian response variables
Consider observation of a phenomenon of interest subject to selective sampling due to a censoring mechanism regulated by some other variable. In this context, an extensive literature exists linked to the so-called Heckman selection model. A great deal of this work has been developed under Gaussian a...
Gespeichert in:
Veröffentlicht in: | Statistical methods & applications 2019-03, Vol.28 (1), p.27-56 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 1 |
container_start_page | 27 |
container_title | Statistical methods & applications |
container_volume | 28 |
creator | Azzalini, Adelchi Kim, Hyoung-Moon Kim, Hea-Jung |
description | Consider observation of a phenomenon of interest subject to selective sampling due to a censoring mechanism regulated by some other variable. In this context, an extensive literature exists linked to the so-called Heckman selection model. A great deal of this work has been developed under Gaussian assumption of the underlying probability distributions; considerably less work has dealt with other distributions. We examine a general construction which encompasses a variety of distributions and allows various options of the selection mechanism, focusing especially on the case of discrete response. Inferential methods based on the pertaining likelihood function are developed. |
doi_str_mv | 10.1007/s10260-018-0427-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2019946332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019946332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-f1d3e7422cc3366ac9c0fd2bb35af8b69451ecfa8e55c4e624b69faed6b2f3b83</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9F8NdseZdFVWPSggreQphPt0k1qpiv47-1awZOnGYbnfQceQs4FvxScL65QcGk446JkXMsFEwdkJoxQrCrF6-HPXjJZCH5MThA3nCultJqRhye37TugCB34oU2RblMDHdKQMm1a9BkGoC42NA3vkGlMka3cDrF1kWbAPkUE-uly6-oO8JQcBdchnP3OOXm5vXle3rH14-p-eb1mXulqYEE0ChZaSu-VMsb5yvPQyLpWhQtlbSpdCPDBlVAUXoORerwFB42pZVB1qebkYurtc_rYAQ52k3Y5ji-t5KKqtFFKjpSYKJ8TYoZg-9xuXf6ygtu9Njtps6M2u9dmxZiRUwZHNr5B_mv-P_QNB2ZxBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019946332</pqid></control><display><type>article</type><title>Sample selection models for discrete and other non-Gaussian response variables</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Azzalini, Adelchi ; Kim, Hyoung-Moon ; Kim, Hea-Jung</creator><creatorcontrib>Azzalini, Adelchi ; Kim, Hyoung-Moon ; Kim, Hea-Jung</creatorcontrib><description>Consider observation of a phenomenon of interest subject to selective sampling due to a censoring mechanism regulated by some other variable. In this context, an extensive literature exists linked to the so-called Heckman selection model. A great deal of this work has been developed under Gaussian assumption of the underlying probability distributions; considerably less work has dealt with other distributions. We examine a general construction which encompasses a variety of distributions and allows various options of the selection mechanism, focusing especially on the case of discrete response. Inferential methods based on the pertaining likelihood function are developed.</description><identifier>ISSN: 1618-2510</identifier><identifier>EISSN: 1613-981X</identifier><identifier>DOI: 10.1007/s10260-018-0427-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bias ; Chemistry and Earth Sciences ; Computer Science ; Economics ; Expected values ; Finance ; Health Sciences ; Humanities ; Insurance ; Law ; Management ; Mathematics and Statistics ; Medicine ; Normal distribution ; Original Paper ; Physics ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Statistics for Engineering ; Statistics for Life Sciences ; Statistics for Social Sciences ; Variables ; Wages & salaries</subject><ispartof>Statistical methods & applications, 2019-03, Vol.28 (1), p.27-56</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Statistical Methods & Applications is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-f1d3e7422cc3366ac9c0fd2bb35af8b69451ecfa8e55c4e624b69faed6b2f3b83</citedby><cites>FETCH-LOGICAL-c349t-f1d3e7422cc3366ac9c0fd2bb35af8b69451ecfa8e55c4e624b69faed6b2f3b83</cites><orcidid>0000-0002-6014-5207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10260-018-0427-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10260-018-0427-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Azzalini, Adelchi</creatorcontrib><creatorcontrib>Kim, Hyoung-Moon</creatorcontrib><creatorcontrib>Kim, Hea-Jung</creatorcontrib><title>Sample selection models for discrete and other non-Gaussian response variables</title><title>Statistical methods & applications</title><addtitle>Stat Methods Appl</addtitle><description>Consider observation of a phenomenon of interest subject to selective sampling due to a censoring mechanism regulated by some other variable. In this context, an extensive literature exists linked to the so-called Heckman selection model. A great deal of this work has been developed under Gaussian assumption of the underlying probability distributions; considerably less work has dealt with other distributions. We examine a general construction which encompasses a variety of distributions and allows various options of the selection mechanism, focusing especially on the case of discrete response. Inferential methods based on the pertaining likelihood function are developed.</description><subject>Bias</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Expected values</subject><subject>Finance</subject><subject>Health Sciences</subject><subject>Humanities</subject><subject>Insurance</subject><subject>Law</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Normal distribution</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Statistics for Social Sciences</subject><subject>Variables</subject><subject>Wages & salaries</subject><issn>1618-2510</issn><issn>1613-981X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9F8NdseZdFVWPSggreQphPt0k1qpiv47-1awZOnGYbnfQceQs4FvxScL65QcGk446JkXMsFEwdkJoxQrCrF6-HPXjJZCH5MThA3nCultJqRhye37TugCB34oU2RblMDHdKQMm1a9BkGoC42NA3vkGlMka3cDrF1kWbAPkUE-uly6-oO8JQcBdchnP3OOXm5vXle3rH14-p-eb1mXulqYEE0ChZaSu-VMsb5yvPQyLpWhQtlbSpdCPDBlVAUXoORerwFB42pZVB1qebkYurtc_rYAQ52k3Y5ji-t5KKqtFFKjpSYKJ8TYoZg-9xuXf6ygtu9Njtps6M2u9dmxZiRUwZHNr5B_mv-P_QNB2ZxBw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Azzalini, Adelchi</creator><creator>Kim, Hyoung-Moon</creator><creator>Kim, Hea-Jung</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6014-5207</orcidid></search><sort><creationdate>20190301</creationdate><title>Sample selection models for discrete and other non-Gaussian response variables</title><author>Azzalini, Adelchi ; Kim, Hyoung-Moon ; Kim, Hea-Jung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-f1d3e7422cc3366ac9c0fd2bb35af8b69451ecfa8e55c4e624b69faed6b2f3b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bias</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Expected values</topic><topic>Finance</topic><topic>Health Sciences</topic><topic>Humanities</topic><topic>Insurance</topic><topic>Law</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Normal distribution</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Statistics for Social Sciences</topic><topic>Variables</topic><topic>Wages & salaries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azzalini, Adelchi</creatorcontrib><creatorcontrib>Kim, Hyoung-Moon</creatorcontrib><creatorcontrib>Kim, Hea-Jung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Statistical methods & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azzalini, Adelchi</au><au>Kim, Hyoung-Moon</au><au>Kim, Hea-Jung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample selection models for discrete and other non-Gaussian response variables</atitle><jtitle>Statistical methods & applications</jtitle><stitle>Stat Methods Appl</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>28</volume><issue>1</issue><spage>27</spage><epage>56</epage><pages>27-56</pages><issn>1618-2510</issn><eissn>1613-981X</eissn><abstract>Consider observation of a phenomenon of interest subject to selective sampling due to a censoring mechanism regulated by some other variable. In this context, an extensive literature exists linked to the so-called Heckman selection model. A great deal of this work has been developed under Gaussian assumption of the underlying probability distributions; considerably less work has dealt with other distributions. We examine a general construction which encompasses a variety of distributions and allows various options of the selection mechanism, focusing especially on the case of discrete response. Inferential methods based on the pertaining likelihood function are developed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10260-018-0427-1</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-6014-5207</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2510 |
ispartof | Statistical methods & applications, 2019-03, Vol.28 (1), p.27-56 |
issn | 1618-2510 1613-981X |
language | eng |
recordid | cdi_proquest_journals_2019946332 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Bias Chemistry and Earth Sciences Computer Science Economics Expected values Finance Health Sciences Humanities Insurance Law Management Mathematics and Statistics Medicine Normal distribution Original Paper Physics Statistical Theory and Methods Statistics Statistics for Business Statistics for Engineering Statistics for Life Sciences Statistics for Social Sciences Variables Wages & salaries |
title | Sample selection models for discrete and other non-Gaussian response variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample%20selection%20models%20for%20discrete%20and%20other%20non-Gaussian%20response%20variables&rft.jtitle=Statistical%20methods%20&%20applications&rft.au=Azzalini,%20Adelchi&rft.date=2019-03-01&rft.volume=28&rft.issue=1&rft.spage=27&rft.epage=56&rft.pages=27-56&rft.issn=1618-2510&rft.eissn=1613-981X&rft_id=info:doi/10.1007/s10260-018-0427-1&rft_dat=%3Cproquest_cross%3E2019946332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019946332&rft_id=info:pmid/&rfr_iscdi=true |