Composable security of unidimensional continuous-variable quantum key distribution

We investigate the composable security of unidimensional continuous-variable quantum key distribution (UCVQKD) protocol in generally phase-sensitive channel; the UCVQKD protocol is based on the Gaussian modulation of a single quadrature of the coherent state of light, aiming to provide a simple impl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing 2018-05, Vol.17 (5), p.1-19, Article 113
Hauptverfasser: Liao, Qin, Guo, Ying, Xie, Cailang, Huang, Duan, Huang, Peng, Zeng, Guihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 5
container_start_page 1
container_title Quantum information processing
container_volume 17
creator Liao, Qin
Guo, Ying
Xie, Cailang
Huang, Duan
Huang, Peng
Zeng, Guihua
description We investigate the composable security of unidimensional continuous-variable quantum key distribution (UCVQKD) protocol in generally phase-sensitive channel; the UCVQKD protocol is based on the Gaussian modulation of a single quadrature of the coherent state of light, aiming to provide a simple implementation of key distribution compared to the symmetrically modulated Gaussian coherent-state protocols. This protocol neglects the necessity in one of the quadrature modulations in coherent states and hence reduces the system complexity. To clarify the influence of finite-size effect and the cost of performance degeneration, we establish the relationship of the balanced parameters of the unmodulated quadrature and estimate the precise secure region. Subsequently, we illustrate the composable security of the UCVQKD protocol against collective attacks and achieve the tightest bound of the UCVQKD protocol. Numerical simulations show the asymptotic secret key rate of the UCVQKD protocol, together with the symmetrically modulated Gaussian coherent-state protocols.
doi_str_mv 10.1007/s11128-018-1881-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2019846034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019846034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f2c7b4180da3ed60300ba003ea7de8704ac0f450f940db39c8e0886a31d78a423</originalsourceid><addsrcrecordid>eNp1kE1LAzEQQIMoWKs_wNuC5-hMkt2kRyl-QUEQPYdsNiup3U2bbIT-e7ddwZOnmcObx_AIuUa4RQB5lxCRKQqoKCqFlJ2QGZaSU-ScnR53oCDL8pxcpLQGYFipakbelqHbhmTqjSuSszn6YV-Etsi9b3zn-uRDbzaFDf3g-xxyot8m-iO-y6Yfcld8uX3R-DREX-dhxC_JWWs2yV39zjn5eHx4Xz7T1evTy_J-RS3HaqAts7IWqKAx3DUVcIDaAHBnZOOUBGEstKKEdiGgqfnCKgdKVYZjI5URjM_JzeTdxrDLLg16HXIcv02aAS6UGJ1ipHCibAwpRdfqbfSdiXuNoA_p9JROj-n0IZ0-mNl0k0a2_3Txz_z_0Q-bdXJ6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019846034</pqid></control><display><type>article</type><title>Composable security of unidimensional continuous-variable quantum key distribution</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liao, Qin ; Guo, Ying ; Xie, Cailang ; Huang, Duan ; Huang, Peng ; Zeng, Guihua</creator><creatorcontrib>Liao, Qin ; Guo, Ying ; Xie, Cailang ; Huang, Duan ; Huang, Peng ; Zeng, Guihua</creatorcontrib><description>We investigate the composable security of unidimensional continuous-variable quantum key distribution (UCVQKD) protocol in generally phase-sensitive channel; the UCVQKD protocol is based on the Gaussian modulation of a single quadrature of the coherent state of light, aiming to provide a simple implementation of key distribution compared to the symmetrically modulated Gaussian coherent-state protocols. This protocol neglects the necessity in one of the quadrature modulations in coherent states and hence reduces the system complexity. To clarify the influence of finite-size effect and the cost of performance degeneration, we establish the relationship of the balanced parameters of the unmodulated quadrature and estimate the precise secure region. Subsequently, we illustrate the composable security of the UCVQKD protocol against collective attacks and achieve the tightest bound of the UCVQKD protocol. Numerical simulations show the asymptotic secret key rate of the UCVQKD protocol, together with the symmetrically modulated Gaussian coherent-state protocols.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-018-1881-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Coherence ; Computer simulation ; Continuity (mathematics) ; Data Structures and Information Theory ; Degeneration ; Gaussian distribution ; Mathematical Physics ; Parameter estimation ; Physics ; Physics and Astronomy ; Protocol ; Quantum Computing ; Quantum cryptography ; Quantum Information Technology ; Quantum Physics ; Security ; Size effects ; Spintronics</subject><ispartof>Quantum information processing, 2018-05, Vol.17 (5), p.1-19, Article 113</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f2c7b4180da3ed60300ba003ea7de8704ac0f450f940db39c8e0886a31d78a423</citedby><cites>FETCH-LOGICAL-c316t-f2c7b4180da3ed60300ba003ea7de8704ac0f450f940db39c8e0886a31d78a423</cites><orcidid>0000-0001-7692-7476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-018-1881-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-018-1881-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liao, Qin</creatorcontrib><creatorcontrib>Guo, Ying</creatorcontrib><creatorcontrib>Xie, Cailang</creatorcontrib><creatorcontrib>Huang, Duan</creatorcontrib><creatorcontrib>Huang, Peng</creatorcontrib><creatorcontrib>Zeng, Guihua</creatorcontrib><title>Composable security of unidimensional continuous-variable quantum key distribution</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>We investigate the composable security of unidimensional continuous-variable quantum key distribution (UCVQKD) protocol in generally phase-sensitive channel; the UCVQKD protocol is based on the Gaussian modulation of a single quadrature of the coherent state of light, aiming to provide a simple implementation of key distribution compared to the symmetrically modulated Gaussian coherent-state protocols. This protocol neglects the necessity in one of the quadrature modulations in coherent states and hence reduces the system complexity. To clarify the influence of finite-size effect and the cost of performance degeneration, we establish the relationship of the balanced parameters of the unmodulated quadrature and estimate the precise secure region. Subsequently, we illustrate the composable security of the UCVQKD protocol against collective attacks and achieve the tightest bound of the UCVQKD protocol. Numerical simulations show the asymptotic secret key rate of the UCVQKD protocol, together with the symmetrically modulated Gaussian coherent-state protocols.</description><subject>Coherence</subject><subject>Computer simulation</subject><subject>Continuity (mathematics)</subject><subject>Data Structures and Information Theory</subject><subject>Degeneration</subject><subject>Gaussian distribution</subject><subject>Mathematical Physics</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Protocol</subject><subject>Quantum Computing</subject><subject>Quantum cryptography</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Security</subject><subject>Size effects</subject><subject>Spintronics</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQQIMoWKs_wNuC5-hMkt2kRyl-QUEQPYdsNiup3U2bbIT-e7ddwZOnmcObx_AIuUa4RQB5lxCRKQqoKCqFlJ2QGZaSU-ScnR53oCDL8pxcpLQGYFipakbelqHbhmTqjSuSszn6YV-Etsi9b3zn-uRDbzaFDf3g-xxyot8m-iO-y6Yfcld8uX3R-DREX-dhxC_JWWs2yV39zjn5eHx4Xz7T1evTy_J-RS3HaqAts7IWqKAx3DUVcIDaAHBnZOOUBGEstKKEdiGgqfnCKgdKVYZjI5URjM_JzeTdxrDLLg16HXIcv02aAS6UGJ1ipHCibAwpRdfqbfSdiXuNoA_p9JROj-n0IZ0-mNl0k0a2_3Txz_z_0Q-bdXJ6</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Liao, Qin</creator><creator>Guo, Ying</creator><creator>Xie, Cailang</creator><creator>Huang, Duan</creator><creator>Huang, Peng</creator><creator>Zeng, Guihua</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7692-7476</orcidid></search><sort><creationdate>20180501</creationdate><title>Composable security of unidimensional continuous-variable quantum key distribution</title><author>Liao, Qin ; Guo, Ying ; Xie, Cailang ; Huang, Duan ; Huang, Peng ; Zeng, Guihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f2c7b4180da3ed60300ba003ea7de8704ac0f450f940db39c8e0886a31d78a423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Coherence</topic><topic>Computer simulation</topic><topic>Continuity (mathematics)</topic><topic>Data Structures and Information Theory</topic><topic>Degeneration</topic><topic>Gaussian distribution</topic><topic>Mathematical Physics</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Protocol</topic><topic>Quantum Computing</topic><topic>Quantum cryptography</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Security</topic><topic>Size effects</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Qin</creatorcontrib><creatorcontrib>Guo, Ying</creatorcontrib><creatorcontrib>Xie, Cailang</creatorcontrib><creatorcontrib>Huang, Duan</creatorcontrib><creatorcontrib>Huang, Peng</creatorcontrib><creatorcontrib>Zeng, Guihua</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Qin</au><au>Guo, Ying</au><au>Xie, Cailang</au><au>Huang, Duan</au><au>Huang, Peng</au><au>Zeng, Guihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composable security of unidimensional continuous-variable quantum key distribution</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>17</volume><issue>5</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><artnum>113</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>We investigate the composable security of unidimensional continuous-variable quantum key distribution (UCVQKD) protocol in generally phase-sensitive channel; the UCVQKD protocol is based on the Gaussian modulation of a single quadrature of the coherent state of light, aiming to provide a simple implementation of key distribution compared to the symmetrically modulated Gaussian coherent-state protocols. This protocol neglects the necessity in one of the quadrature modulations in coherent states and hence reduces the system complexity. To clarify the influence of finite-size effect and the cost of performance degeneration, we establish the relationship of the balanced parameters of the unmodulated quadrature and estimate the precise secure region. Subsequently, we illustrate the composable security of the UCVQKD protocol against collective attacks and achieve the tightest bound of the UCVQKD protocol. Numerical simulations show the asymptotic secret key rate of the UCVQKD protocol, together with the symmetrically modulated Gaussian coherent-state protocols.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-018-1881-2</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7692-7476</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1570-0755
ispartof Quantum information processing, 2018-05, Vol.17 (5), p.1-19, Article 113
issn 1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_2019846034
source SpringerLink Journals - AutoHoldings
subjects Coherence
Computer simulation
Continuity (mathematics)
Data Structures and Information Theory
Degeneration
Gaussian distribution
Mathematical Physics
Parameter estimation
Physics
Physics and Astronomy
Protocol
Quantum Computing
Quantum cryptography
Quantum Information Technology
Quantum Physics
Security
Size effects
Spintronics
title Composable security of unidimensional continuous-variable quantum key distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composable%20security%20of%20unidimensional%20continuous-variable%20quantum%20key%20distribution&rft.jtitle=Quantum%20information%20processing&rft.au=Liao,%20Qin&rft.date=2018-05-01&rft.volume=17&rft.issue=5&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.artnum=113&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-018-1881-2&rft_dat=%3Cproquest_cross%3E2019846034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019846034&rft_id=info:pmid/&rfr_iscdi=true