Self‐Doping Fullerene Electrolyte‐Based Electron Transport Layer for All‐Room‐Temperature‐Processed High‐Performance Flexible Polymer Solar Cells
To achieve high‐performance large‐area flexible polymer solar cells (PSCs), one of the challenges is to develop new interface materials that possess a thermal‐annealing‐free process and thickness‐insensitive photovoltaic properties. Here, an n‐type self‐doping fullerene electrolyte, named PCBB‐3N‐3I...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2018-03, Vol.28 (13), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 28 |
creator | Zhang, Jingwen Xue, Rongming Xu, Guiying Chen, Weijie Bian, Guo‐Qing Wei, Changan Li, Yaowen Li, Yongfang |
description | To achieve high‐performance large‐area flexible polymer solar cells (PSCs), one of the challenges is to develop new interface materials that possess a thermal‐annealing‐free process and thickness‐insensitive photovoltaic properties. Here, an n‐type self‐doping fullerene electrolyte, named PCBB‐3N‐3I, is developed as electron transporting layer (ETL) for the application in PSCs. PCBB‐3N‐3I ETL can be processed at room temperature, and shows excellent orthogonal solvent processability, substantially improved conductivity, and appropriate energy levels. PCBB‐3N‐3I ETL also functions as light‐harvesting acceptor in a bilayer solar cell, contributing to the overall device performance. As a result, the PCBB‐3N‐3I ETL‐based inverted PSCs with a PTB7‐Th:PC71BM photoactive layer demonstrate an enhanced power conversion efficiency (PCE) of 10.62% for rigid and 10.04% for flexible devices. Moreover, the device avoids a thermal annealing process and the photovoltaic properties are insensitive to the thickness of PCBB‐3N‐3I ETL, yielding a PCE of 9.32% for the device with thick PCBB‐3N‐3I ETL (61 nm). To the best of one's knowledge, the above performance yields the highest efficiencies for the flexible PSCs and thick ETL‐based PSCs reported so far. Importantly, the flexible PSCs with PCBB‐3N‐3I ETL also show robust bending durability that could pave the way for the future development of high‐performance flexible solar cells.
An n‐type doping fullerene electrolyte (PCBB‐3N‐3I) with high‐content doping groups, resulting in high conductivity and well‐matched energy levels, is synthesized. The inverted polymer solar cells with PCBB‐3N‐3I electron transport layer show a record efficiency in the flexible polymer solar cells with an extremely high bending durability and thickness‐insensitive photovoltaic behavior. |
doi_str_mv | 10.1002/adfm.201705847 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2019737736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019737736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4227-3a6c705a3bfdf981d82f895d4d5a1124efe170b31b4540eaff2498e43e5eab9d3</originalsourceid><addsrcrecordid>eNqFUctOwzAQjBBIlMKVsyXOLXbivI6lpRSpiIoWiVvkJOuSyonDOhH0xifwA_wcX4KjQjly2tXuzKx2xnHOGR0ySt1Lkcty6FIWUj_i4YHTYwELBh51o8N9z56OnRNjNtTCQo_3nM8lKPn1_jHRdVGtybRVChAqINcKsga12jZg11fCQP47q8gKRWVqjQ2Ziy0gkRrJSCkLfNC6tGUFZQ0omhY79gJ1BqZTmBXr524AaCmlqDIgUwVvRaqALOyx0oottRJIxqCUOXWOpFAGzn5q33mcXq_Gs8H8_uZ2PJoPMu664cATQWa_Fl4qcxlHLI9cGcV-znNfMOZykGBdST2Wcp9TEFK6PI6Ae-CDSOPc6zsXO90a9UsLpkk2usXKnkysoXHoWbMCixruUBlqYxBkUmNRCtwmjCZdBEkXQbKPwBLiHeG1ULD9B52MJtO7P-43Gp6UNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019737736</pqid></control><display><type>article</type><title>Self‐Doping Fullerene Electrolyte‐Based Electron Transport Layer for All‐Room‐Temperature‐Processed High‐Performance Flexible Polymer Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Jingwen ; Xue, Rongming ; Xu, Guiying ; Chen, Weijie ; Bian, Guo‐Qing ; Wei, Changan ; Li, Yaowen ; Li, Yongfang</creator><creatorcontrib>Zhang, Jingwen ; Xue, Rongming ; Xu, Guiying ; Chen, Weijie ; Bian, Guo‐Qing ; Wei, Changan ; Li, Yaowen ; Li, Yongfang</creatorcontrib><description>To achieve high‐performance large‐area flexible polymer solar cells (PSCs), one of the challenges is to develop new interface materials that possess a thermal‐annealing‐free process and thickness‐insensitive photovoltaic properties. Here, an n‐type self‐doping fullerene electrolyte, named PCBB‐3N‐3I, is developed as electron transporting layer (ETL) for the application in PSCs. PCBB‐3N‐3I ETL can be processed at room temperature, and shows excellent orthogonal solvent processability, substantially improved conductivity, and appropriate energy levels. PCBB‐3N‐3I ETL also functions as light‐harvesting acceptor in a bilayer solar cell, contributing to the overall device performance. As a result, the PCBB‐3N‐3I ETL‐based inverted PSCs with a PTB7‐Th:PC71BM photoactive layer demonstrate an enhanced power conversion efficiency (PCE) of 10.62% for rigid and 10.04% for flexible devices. Moreover, the device avoids a thermal annealing process and the photovoltaic properties are insensitive to the thickness of PCBB‐3N‐3I ETL, yielding a PCE of 9.32% for the device with thick PCBB‐3N‐3I ETL (61 nm). To the best of one's knowledge, the above performance yields the highest efficiencies for the flexible PSCs and thick ETL‐based PSCs reported so far. Importantly, the flexible PSCs with PCBB‐3N‐3I ETL also show robust bending durability that could pave the way for the future development of high‐performance flexible solar cells.
An n‐type doping fullerene electrolyte (PCBB‐3N‐3I) with high‐content doping groups, resulting in high conductivity and well‐matched energy levels, is synthesized. The inverted polymer solar cells with PCBB‐3N‐3I electron transport layer show a record efficiency in the flexible polymer solar cells with an extremely high bending durability and thickness‐insensitive photovoltaic behavior.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201705847</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Annealing ; Doping ; Electrolytes ; Electrolytic cells ; Electron transport ; Energy conversion efficiency ; Energy levels ; flexible solar cells ; fullerene ; Fullerenes ; Materials science ; Photovoltaic cells ; polymer solar cells ; Polymers ; Room temperature ; self‐doping ; Solar cells ; thickness‐insensitive photovoltaics</subject><ispartof>Advanced functional materials, 2018-03, Vol.28 (13), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4227-3a6c705a3bfdf981d82f895d4d5a1124efe170b31b4540eaff2498e43e5eab9d3</citedby><cites>FETCH-LOGICAL-c4227-3a6c705a3bfdf981d82f895d4d5a1124efe170b31b4540eaff2498e43e5eab9d3</cites><orcidid>0000-0001-7229-582X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201705847$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201705847$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhang, Jingwen</creatorcontrib><creatorcontrib>Xue, Rongming</creatorcontrib><creatorcontrib>Xu, Guiying</creatorcontrib><creatorcontrib>Chen, Weijie</creatorcontrib><creatorcontrib>Bian, Guo‐Qing</creatorcontrib><creatorcontrib>Wei, Changan</creatorcontrib><creatorcontrib>Li, Yaowen</creatorcontrib><creatorcontrib>Li, Yongfang</creatorcontrib><title>Self‐Doping Fullerene Electrolyte‐Based Electron Transport Layer for All‐Room‐Temperature‐Processed High‐Performance Flexible Polymer Solar Cells</title><title>Advanced functional materials</title><description>To achieve high‐performance large‐area flexible polymer solar cells (PSCs), one of the challenges is to develop new interface materials that possess a thermal‐annealing‐free process and thickness‐insensitive photovoltaic properties. Here, an n‐type self‐doping fullerene electrolyte, named PCBB‐3N‐3I, is developed as electron transporting layer (ETL) for the application in PSCs. PCBB‐3N‐3I ETL can be processed at room temperature, and shows excellent orthogonal solvent processability, substantially improved conductivity, and appropriate energy levels. PCBB‐3N‐3I ETL also functions as light‐harvesting acceptor in a bilayer solar cell, contributing to the overall device performance. As a result, the PCBB‐3N‐3I ETL‐based inverted PSCs with a PTB7‐Th:PC71BM photoactive layer demonstrate an enhanced power conversion efficiency (PCE) of 10.62% for rigid and 10.04% for flexible devices. Moreover, the device avoids a thermal annealing process and the photovoltaic properties are insensitive to the thickness of PCBB‐3N‐3I ETL, yielding a PCE of 9.32% for the device with thick PCBB‐3N‐3I ETL (61 nm). To the best of one's knowledge, the above performance yields the highest efficiencies for the flexible PSCs and thick ETL‐based PSCs reported so far. Importantly, the flexible PSCs with PCBB‐3N‐3I ETL also show robust bending durability that could pave the way for the future development of high‐performance flexible solar cells.
An n‐type doping fullerene electrolyte (PCBB‐3N‐3I) with high‐content doping groups, resulting in high conductivity and well‐matched energy levels, is synthesized. The inverted polymer solar cells with PCBB‐3N‐3I electron transport layer show a record efficiency in the flexible polymer solar cells with an extremely high bending durability and thickness‐insensitive photovoltaic behavior.</description><subject>Annealing</subject><subject>Doping</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Electron transport</subject><subject>Energy conversion efficiency</subject><subject>Energy levels</subject><subject>flexible solar cells</subject><subject>fullerene</subject><subject>Fullerenes</subject><subject>Materials science</subject><subject>Photovoltaic cells</subject><subject>polymer solar cells</subject><subject>Polymers</subject><subject>Room temperature</subject><subject>self‐doping</subject><subject>Solar cells</subject><subject>thickness‐insensitive photovoltaics</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUctOwzAQjBBIlMKVsyXOLXbivI6lpRSpiIoWiVvkJOuSyonDOhH0xifwA_wcX4KjQjly2tXuzKx2xnHOGR0ySt1Lkcty6FIWUj_i4YHTYwELBh51o8N9z56OnRNjNtTCQo_3nM8lKPn1_jHRdVGtybRVChAqINcKsga12jZg11fCQP47q8gKRWVqjQ2Ziy0gkRrJSCkLfNC6tGUFZQ0omhY79gJ1BqZTmBXr524AaCmlqDIgUwVvRaqALOyx0oottRJIxqCUOXWOpFAGzn5q33mcXq_Gs8H8_uZ2PJoPMu664cATQWa_Fl4qcxlHLI9cGcV-znNfMOZykGBdST2Wcp9TEFK6PI6Ae-CDSOPc6zsXO90a9UsLpkk2usXKnkysoXHoWbMCixruUBlqYxBkUmNRCtwmjCZdBEkXQbKPwBLiHeG1ULD9B52MJtO7P-43Gp6UNA</recordid><startdate>20180328</startdate><enddate>20180328</enddate><creator>Zhang, Jingwen</creator><creator>Xue, Rongming</creator><creator>Xu, Guiying</creator><creator>Chen, Weijie</creator><creator>Bian, Guo‐Qing</creator><creator>Wei, Changan</creator><creator>Li, Yaowen</creator><creator>Li, Yongfang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7229-582X</orcidid></search><sort><creationdate>20180328</creationdate><title>Self‐Doping Fullerene Electrolyte‐Based Electron Transport Layer for All‐Room‐Temperature‐Processed High‐Performance Flexible Polymer Solar Cells</title><author>Zhang, Jingwen ; Xue, Rongming ; Xu, Guiying ; Chen, Weijie ; Bian, Guo‐Qing ; Wei, Changan ; Li, Yaowen ; Li, Yongfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4227-3a6c705a3bfdf981d82f895d4d5a1124efe170b31b4540eaff2498e43e5eab9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annealing</topic><topic>Doping</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Electron transport</topic><topic>Energy conversion efficiency</topic><topic>Energy levels</topic><topic>flexible solar cells</topic><topic>fullerene</topic><topic>Fullerenes</topic><topic>Materials science</topic><topic>Photovoltaic cells</topic><topic>polymer solar cells</topic><topic>Polymers</topic><topic>Room temperature</topic><topic>self‐doping</topic><topic>Solar cells</topic><topic>thickness‐insensitive photovoltaics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jingwen</creatorcontrib><creatorcontrib>Xue, Rongming</creatorcontrib><creatorcontrib>Xu, Guiying</creatorcontrib><creatorcontrib>Chen, Weijie</creatorcontrib><creatorcontrib>Bian, Guo‐Qing</creatorcontrib><creatorcontrib>Wei, Changan</creatorcontrib><creatorcontrib>Li, Yaowen</creatorcontrib><creatorcontrib>Li, Yongfang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jingwen</au><au>Xue, Rongming</au><au>Xu, Guiying</au><au>Chen, Weijie</au><au>Bian, Guo‐Qing</au><au>Wei, Changan</au><au>Li, Yaowen</au><au>Li, Yongfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Doping Fullerene Electrolyte‐Based Electron Transport Layer for All‐Room‐Temperature‐Processed High‐Performance Flexible Polymer Solar Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2018-03-28</date><risdate>2018</risdate><volume>28</volume><issue>13</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>To achieve high‐performance large‐area flexible polymer solar cells (PSCs), one of the challenges is to develop new interface materials that possess a thermal‐annealing‐free process and thickness‐insensitive photovoltaic properties. Here, an n‐type self‐doping fullerene electrolyte, named PCBB‐3N‐3I, is developed as electron transporting layer (ETL) for the application in PSCs. PCBB‐3N‐3I ETL can be processed at room temperature, and shows excellent orthogonal solvent processability, substantially improved conductivity, and appropriate energy levels. PCBB‐3N‐3I ETL also functions as light‐harvesting acceptor in a bilayer solar cell, contributing to the overall device performance. As a result, the PCBB‐3N‐3I ETL‐based inverted PSCs with a PTB7‐Th:PC71BM photoactive layer demonstrate an enhanced power conversion efficiency (PCE) of 10.62% for rigid and 10.04% for flexible devices. Moreover, the device avoids a thermal annealing process and the photovoltaic properties are insensitive to the thickness of PCBB‐3N‐3I ETL, yielding a PCE of 9.32% for the device with thick PCBB‐3N‐3I ETL (61 nm). To the best of one's knowledge, the above performance yields the highest efficiencies for the flexible PSCs and thick ETL‐based PSCs reported so far. Importantly, the flexible PSCs with PCBB‐3N‐3I ETL also show robust bending durability that could pave the way for the future development of high‐performance flexible solar cells.
An n‐type doping fullerene electrolyte (PCBB‐3N‐3I) with high‐content doping groups, resulting in high conductivity and well‐matched energy levels, is synthesized. The inverted polymer solar cells with PCBB‐3N‐3I electron transport layer show a record efficiency in the flexible polymer solar cells with an extremely high bending durability and thickness‐insensitive photovoltaic behavior.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201705847</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7229-582X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2018-03, Vol.28 (13), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2019737736 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Annealing Doping Electrolytes Electrolytic cells Electron transport Energy conversion efficiency Energy levels flexible solar cells fullerene Fullerenes Materials science Photovoltaic cells polymer solar cells Polymers Room temperature self‐doping Solar cells thickness‐insensitive photovoltaics |
title | Self‐Doping Fullerene Electrolyte‐Based Electron Transport Layer for All‐Room‐Temperature‐Processed High‐Performance Flexible Polymer Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Doping%20Fullerene%20Electrolyte%E2%80%90Based%20Electron%20Transport%20Layer%20for%20All%E2%80%90Room%E2%80%90Temperature%E2%80%90Processed%20High%E2%80%90Performance%20Flexible%20Polymer%20Solar%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhang,%20Jingwen&rft.date=2018-03-28&rft.volume=28&rft.issue=13&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201705847&rft_dat=%3Cproquest_cross%3E2019737736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019737736&rft_id=info:pmid/&rfr_iscdi=true |