Hilbert C∗-modules as a subcategory of operator systems and injectivity
In this paper, we study a category whose objects are Hilbert C ∗ -modules and whose morphisms are completely semi- ϕ -maps. We give a characterization of injective objects in this category. In fact, we investigate extendability of completely semi- ϕ -maps on Hilbert C ∗ -modules, leading to an analo...
Gespeichert in:
Veröffentlicht in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2018-04, Vol.22 (2), p.597-607 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 607 |
---|---|
container_issue | 2 |
container_start_page | 597 |
container_title | Positivity : an international journal devoted to the theory and applications of positivity in analysis |
container_volume | 22 |
creator | Asadi, Mohammad B. Behmani, Reza Medghalchi, Ali R. Nikpey, Hamed |
description | In this paper, we study a category whose objects are Hilbert
C
∗
-modules and whose morphisms are completely semi-
ϕ
-maps. We give a characterization of injective objects in this category. In fact, we investigate extendability of completely semi-
ϕ
-maps on Hilbert
C
∗
-modules, leading to an analog of the Arveson’s extension theorem for completely semi-
ϕ
-maps (in contrast with
ϕ
-maps). This theorem together with previous results suggest that the completely semi-
ϕ
-maps are proper generalizations of the completely positive maps. |
doi_str_mv | 10.1007/s11117-017-0530-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2019265742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019265742</sourcerecordid><originalsourceid>FETCH-LOGICAL-p226t-2c1b57d6961ec26372f639a58b45368417124ade78ce30904e23da18904e087c3</originalsourceid><addsrcrecordid>eNpFkM9KAzEQxoMoWKsP4C3gOTqZbP4dpagtFLzoecnupmVLu7smWaFv4Bv4fj6JWSo4zMd8h9_MwEfILYd7DqAfIs-lGUySApg9IzMuNTKLhp9nL4xkHC1ekqsYdwB5q4AZWS3bfeVDooufr2926Jtx7yN1uWkcq9olv-3DkfYb2g8-uNQHGo8x-UMmuoa23c7Xqf1s0_GaXGzcPvqbvzkn789Pb4slW7--rBaPazYgqsSw5pXUjbKK-xqV0LhRwjppqkIKZQquORau8drUXoCFwqNoHDeTA6NrMSd3p7tD6D9GH1O568fQ5ZclAreopC4wU3ii4hDabuvDP8WhnCIrT5GVMClHVlrxC8bgXlE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019265742</pqid></control><display><type>article</type><title>Hilbert C∗-modules as a subcategory of operator systems and injectivity</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Asadi, Mohammad B. ; Behmani, Reza ; Medghalchi, Ali R. ; Nikpey, Hamed</creator><creatorcontrib>Asadi, Mohammad B. ; Behmani, Reza ; Medghalchi, Ali R. ; Nikpey, Hamed</creatorcontrib><description>In this paper, we study a category whose objects are Hilbert
C
∗
-modules and whose morphisms are completely semi-
ϕ
-maps. We give a characterization of injective objects in this category. In fact, we investigate extendability of completely semi-
ϕ
-maps on Hilbert
C
∗
-modules, leading to an analog of the Arveson’s extension theorem for completely semi-
ϕ
-maps (in contrast with
ϕ
-maps). This theorem together with previous results suggest that the completely semi-
ϕ
-maps are proper generalizations of the completely positive maps.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-017-0530-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Econometrics ; Fourier Analysis ; Mathematics ; Mathematics and Statistics ; Modules ; Operator Theory ; Potential Theory ; Theorems</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2018-04, Vol.22 (2), p.597-607</ispartof><rights>Springer International Publishing AG 2017</rights><rights>Positivity is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p226t-2c1b57d6961ec26372f639a58b45368417124ade78ce30904e23da18904e087c3</cites><orcidid>0000-0003-3803-5308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-017-0530-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-017-0530-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Asadi, Mohammad B.</creatorcontrib><creatorcontrib>Behmani, Reza</creatorcontrib><creatorcontrib>Medghalchi, Ali R.</creatorcontrib><creatorcontrib>Nikpey, Hamed</creatorcontrib><title>Hilbert C∗-modules as a subcategory of operator systems and injectivity</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>In this paper, we study a category whose objects are Hilbert
C
∗
-modules and whose morphisms are completely semi-
ϕ
-maps. We give a characterization of injective objects in this category. In fact, we investigate extendability of completely semi-
ϕ
-maps on Hilbert
C
∗
-modules, leading to an analog of the Arveson’s extension theorem for completely semi-
ϕ
-maps (in contrast with
ϕ
-maps). This theorem together with previous results suggest that the completely semi-
ϕ
-maps are proper generalizations of the completely positive maps.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Econometrics</subject><subject>Fourier Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>Operator Theory</subject><subject>Potential Theory</subject><subject>Theorems</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkM9KAzEQxoMoWKsP4C3gOTqZbP4dpagtFLzoecnupmVLu7smWaFv4Bv4fj6JWSo4zMd8h9_MwEfILYd7DqAfIs-lGUySApg9IzMuNTKLhp9nL4xkHC1ekqsYdwB5q4AZWS3bfeVDooufr2926Jtx7yN1uWkcq9olv-3DkfYb2g8-uNQHGo8x-UMmuoa23c7Xqf1s0_GaXGzcPvqbvzkn789Pb4slW7--rBaPazYgqsSw5pXUjbKK-xqV0LhRwjppqkIKZQquORau8drUXoCFwqNoHDeTA6NrMSd3p7tD6D9GH1O568fQ5ZclAreopC4wU3ii4hDabuvDP8WhnCIrT5GVMClHVlrxC8bgXlE</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Asadi, Mohammad B.</creator><creator>Behmani, Reza</creator><creator>Medghalchi, Ali R.</creator><creator>Nikpey, Hamed</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3803-5308</orcidid></search><sort><creationdate>20180401</creationdate><title>Hilbert C∗-modules as a subcategory of operator systems and injectivity</title><author>Asadi, Mohammad B. ; Behmani, Reza ; Medghalchi, Ali R. ; Nikpey, Hamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p226t-2c1b57d6961ec26372f639a58b45368417124ade78ce30904e23da18904e087c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Econometrics</topic><topic>Fourier Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>Operator Theory</topic><topic>Potential Theory</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asadi, Mohammad B.</creatorcontrib><creatorcontrib>Behmani, Reza</creatorcontrib><creatorcontrib>Medghalchi, Ali R.</creatorcontrib><creatorcontrib>Nikpey, Hamed</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asadi, Mohammad B.</au><au>Behmani, Reza</au><au>Medghalchi, Ali R.</au><au>Nikpey, Hamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hilbert C∗-modules as a subcategory of operator systems and injectivity</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>22</volume><issue>2</issue><spage>597</spage><epage>607</epage><pages>597-607</pages><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>In this paper, we study a category whose objects are Hilbert
C
∗
-modules and whose morphisms are completely semi-
ϕ
-maps. We give a characterization of injective objects in this category. In fact, we investigate extendability of completely semi-
ϕ
-maps on Hilbert
C
∗
-modules, leading to an analog of the Arveson’s extension theorem for completely semi-
ϕ
-maps (in contrast with
ϕ
-maps). This theorem together with previous results suggest that the completely semi-
ϕ
-maps are proper generalizations of the completely positive maps.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-017-0530-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3803-5308</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-1292 |
ispartof | Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2018-04, Vol.22 (2), p.597-607 |
issn | 1385-1292 1572-9281 |
language | eng |
recordid | cdi_proquest_journals_2019265742 |
source | Business Source Complete; Springer Nature - Complete Springer Journals |
subjects | Calculus of Variations and Optimal Control Optimization Econometrics Fourier Analysis Mathematics Mathematics and Statistics Modules Operator Theory Potential Theory Theorems |
title | Hilbert C∗-modules as a subcategory of operator systems and injectivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A26%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hilbert%20C%E2%88%97-modules%20as%20a%20subcategory%20of%20operator%20systems%20and%20injectivity&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Asadi,%20Mohammad%20B.&rft.date=2018-04-01&rft.volume=22&rft.issue=2&rft.spage=597&rft.epage=607&rft.pages=597-607&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-017-0530-9&rft_dat=%3Cproquest_sprin%3E2019265742%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019265742&rft_id=info:pmid/&rfr_iscdi=true |