A simplicial homology algorithm for Lipschitz optimisation
The simplicial homology global optimisation (SHGO) algorithm is a general purpose global optimisation algorithm based on applications of simplicial integral homology and combinatorial topology. SHGO approximates the homology groups of a complex built on a hypersurface homeomorphic to a complex on th...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2018-10, Vol.72 (2), p.181-217 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 217 |
---|---|
container_issue | 2 |
container_start_page | 181 |
container_title | Journal of global optimization |
container_volume | 72 |
creator | Endres, Stefan C. Sandrock, Carl Focke, Walter W. |
description | The simplicial homology global optimisation (SHGO) algorithm is a general purpose global optimisation algorithm based on applications of simplicial integral homology and combinatorial topology. SHGO approximates the homology groups of a complex built on a hypersurface homeomorphic to a complex on the objective function. This provides both approximations of locally convex subdomains in the search space through Sperner’s lemma and a useful visual tool for characterising and efficiently solving higher dimensional black and grey box optimisation problems. This complex is built up using sampling points within the feasible search space as vertices. The algorithm is specialised in finding all the local minima of an objective function with expensive function evaluations efficiently which is especially suitable to applications such as energy landscape exploration. SHGO was initially developed as an improvement on the topographical global optimisation (TGO) method. It is proven that the SHGO algorithm will always outperform TGO on function evaluations if the objective function is Lipschitz smooth. In this paper SHGO is applied to non-convex problems with linear and box constraints with bounds placed on the variables. Numerical experiments on linearly constrained test problems show that SHGO gives competitive results compared to TGO and the recently developed Lc-DISIMPL algorithm as well as the PSwarm, LGO and DIRECT-L1 algorithms. Furthermore SHGO is compared with the TGO, basinhopping (BH) and differential evolution (DE) global optimisation algorithms over a large selection of black-box problems with bounds placed on the variables from the SciPy benchmarking test suite. A Python implementation of the SHGO and TGO algorithms published under a MIT license can be found from
https://bitbucket.org/upiamcompthermo/shgo/
. |
doi_str_mv | 10.1007/s10898-018-0645-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2019063826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718423023</galeid><sourcerecordid>A718423023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-7395915cdadddf05c0ee8758cf54c0e9e6e713b4d9634f7773a636000f690bfe3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz9VJ0iSNt2XxCxa86Dlk02Q3S9vUpHuov94sFTzJMMwwvM_M8CJ0i-EeA4iHhKGWdQk4J69YOZ2hBWaClkRifo4WIAkrGQC-RFcpHQBA1ows0OOqSL4bWm-8bot96EIbdlOh212Iftx3hQux2Pghmb0fv4swjL7zSY8-9Nfowuk22ZvfukSfz08f69dy8_7ytl5tSkMZG0tBJZOYmUY3TeOAGbC2Fqw2jlW5l5Zbgem2aiSnlRNCUM0pzw86LmHrLF2iu3nvEMPX0aZRHcIx9vmkIoAlcFoTnlX3s2qnW6t878IYtcnR2M6b0Fvn83wlcF0RCoRmAM-AiSGlaJ0aou90nBQGdfJUzZ6q7Kk6eaqmzJCZSVnb72z8e-V_6AciXnmH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019063826</pqid></control><display><type>article</type><title>A simplicial homology algorithm for Lipschitz optimisation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Endres, Stefan C. ; Sandrock, Carl ; Focke, Walter W.</creator><creatorcontrib>Endres, Stefan C. ; Sandrock, Carl ; Focke, Walter W.</creatorcontrib><description>The simplicial homology global optimisation (SHGO) algorithm is a general purpose global optimisation algorithm based on applications of simplicial integral homology and combinatorial topology. SHGO approximates the homology groups of a complex built on a hypersurface homeomorphic to a complex on the objective function. This provides both approximations of locally convex subdomains in the search space through Sperner’s lemma and a useful visual tool for characterising and efficiently solving higher dimensional black and grey box optimisation problems. This complex is built up using sampling points within the feasible search space as vertices. The algorithm is specialised in finding all the local minima of an objective function with expensive function evaluations efficiently which is especially suitable to applications such as energy landscape exploration. SHGO was initially developed as an improvement on the topographical global optimisation (TGO) method. It is proven that the SHGO algorithm will always outperform TGO on function evaluations if the objective function is Lipschitz smooth. In this paper SHGO is applied to non-convex problems with linear and box constraints with bounds placed on the variables. Numerical experiments on linearly constrained test problems show that SHGO gives competitive results compared to TGO and the recently developed Lc-DISIMPL algorithm as well as the PSwarm, LGO and DIRECT-L1 algorithms. Furthermore SHGO is compared with the TGO, basinhopping (BH) and differential evolution (DE) global optimisation algorithms over a large selection of black-box problems with bounds placed on the variables from the SciPy benchmarking test suite. A Python implementation of the SHGO and TGO algorithms published under a MIT license can be found from
https://bitbucket.org/upiamcompthermo/shgo/
.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-018-0645-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Combinatorial analysis ; Computer Science ; Evolutionary algorithms ; Homology ; Mathematical optimization ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Real Functions</subject><ispartof>Journal of global optimization, 2018-10, Vol.72 (2), p.181-217</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Journal of Global Optimization is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-7395915cdadddf05c0ee8758cf54c0e9e6e713b4d9634f7773a636000f690bfe3</citedby><cites>FETCH-LOGICAL-c355t-7395915cdadddf05c0ee8758cf54c0e9e6e713b4d9634f7773a636000f690bfe3</cites><orcidid>0000-0002-9501-2762 ; 0000-0003-2828-5186 ; 0000-0002-8512-8948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-018-0645-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-018-0645-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Endres, Stefan C.</creatorcontrib><creatorcontrib>Sandrock, Carl</creatorcontrib><creatorcontrib>Focke, Walter W.</creatorcontrib><title>A simplicial homology algorithm for Lipschitz optimisation</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>The simplicial homology global optimisation (SHGO) algorithm is a general purpose global optimisation algorithm based on applications of simplicial integral homology and combinatorial topology. SHGO approximates the homology groups of a complex built on a hypersurface homeomorphic to a complex on the objective function. This provides both approximations of locally convex subdomains in the search space through Sperner’s lemma and a useful visual tool for characterising and efficiently solving higher dimensional black and grey box optimisation problems. This complex is built up using sampling points within the feasible search space as vertices. The algorithm is specialised in finding all the local minima of an objective function with expensive function evaluations efficiently which is especially suitable to applications such as energy landscape exploration. SHGO was initially developed as an improvement on the topographical global optimisation (TGO) method. It is proven that the SHGO algorithm will always outperform TGO on function evaluations if the objective function is Lipschitz smooth. In this paper SHGO is applied to non-convex problems with linear and box constraints with bounds placed on the variables. Numerical experiments on linearly constrained test problems show that SHGO gives competitive results compared to TGO and the recently developed Lc-DISIMPL algorithm as well as the PSwarm, LGO and DIRECT-L1 algorithms. Furthermore SHGO is compared with the TGO, basinhopping (BH) and differential evolution (DE) global optimisation algorithms over a large selection of black-box problems with bounds placed on the variables from the SciPy benchmarking test suite. A Python implementation of the SHGO and TGO algorithms published under a MIT license can be found from
https://bitbucket.org/upiamcompthermo/shgo/
.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Computer Science</subject><subject>Evolutionary algorithms</subject><subject>Homology</subject><subject>Mathematical optimization</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Real Functions</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz9VJ0iSNt2XxCxa86Dlk02Q3S9vUpHuov94sFTzJMMwwvM_M8CJ0i-EeA4iHhKGWdQk4J69YOZ2hBWaClkRifo4WIAkrGQC-RFcpHQBA1ows0OOqSL4bWm-8bot96EIbdlOh212Iftx3hQux2Pghmb0fv4swjL7zSY8-9Nfowuk22ZvfukSfz08f69dy8_7ytl5tSkMZG0tBJZOYmUY3TeOAGbC2Fqw2jlW5l5Zbgem2aiSnlRNCUM0pzw86LmHrLF2iu3nvEMPX0aZRHcIx9vmkIoAlcFoTnlX3s2qnW6t878IYtcnR2M6b0Fvn83wlcF0RCoRmAM-AiSGlaJ0aou90nBQGdfJUzZ6q7Kk6eaqmzJCZSVnb72z8e-V_6AciXnmH</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Endres, Stefan C.</creator><creator>Sandrock, Carl</creator><creator>Focke, Walter W.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9501-2762</orcidid><orcidid>https://orcid.org/0000-0003-2828-5186</orcidid><orcidid>https://orcid.org/0000-0002-8512-8948</orcidid></search><sort><creationdate>20181001</creationdate><title>A simplicial homology algorithm for Lipschitz optimisation</title><author>Endres, Stefan C. ; Sandrock, Carl ; Focke, Walter W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-7395915cdadddf05c0ee8758cf54c0e9e6e713b4d9634f7773a636000f690bfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Computer Science</topic><topic>Evolutionary algorithms</topic><topic>Homology</topic><topic>Mathematical optimization</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Real Functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Endres, Stefan C.</creatorcontrib><creatorcontrib>Sandrock, Carl</creatorcontrib><creatorcontrib>Focke, Walter W.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Endres, Stefan C.</au><au>Sandrock, Carl</au><au>Focke, Walter W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simplicial homology algorithm for Lipschitz optimisation</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>72</volume><issue>2</issue><spage>181</spage><epage>217</epage><pages>181-217</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>The simplicial homology global optimisation (SHGO) algorithm is a general purpose global optimisation algorithm based on applications of simplicial integral homology and combinatorial topology. SHGO approximates the homology groups of a complex built on a hypersurface homeomorphic to a complex on the objective function. This provides both approximations of locally convex subdomains in the search space through Sperner’s lemma and a useful visual tool for characterising and efficiently solving higher dimensional black and grey box optimisation problems. This complex is built up using sampling points within the feasible search space as vertices. The algorithm is specialised in finding all the local minima of an objective function with expensive function evaluations efficiently which is especially suitable to applications such as energy landscape exploration. SHGO was initially developed as an improvement on the topographical global optimisation (TGO) method. It is proven that the SHGO algorithm will always outperform TGO on function evaluations if the objective function is Lipschitz smooth. In this paper SHGO is applied to non-convex problems with linear and box constraints with bounds placed on the variables. Numerical experiments on linearly constrained test problems show that SHGO gives competitive results compared to TGO and the recently developed Lc-DISIMPL algorithm as well as the PSwarm, LGO and DIRECT-L1 algorithms. Furthermore SHGO is compared with the TGO, basinhopping (BH) and differential evolution (DE) global optimisation algorithms over a large selection of black-box problems with bounds placed on the variables from the SciPy benchmarking test suite. A Python implementation of the SHGO and TGO algorithms published under a MIT license can be found from
https://bitbucket.org/upiamcompthermo/shgo/
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-018-0645-y</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-9501-2762</orcidid><orcidid>https://orcid.org/0000-0003-2828-5186</orcidid><orcidid>https://orcid.org/0000-0002-8512-8948</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2018-10, Vol.72 (2), p.181-217 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_2019063826 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Combinatorial analysis Computer Science Evolutionary algorithms Homology Mathematical optimization Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Real Functions |
title | A simplicial homology algorithm for Lipschitz optimisation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simplicial%20homology%20algorithm%20for%20Lipschitz%20optimisation&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Endres,%20Stefan%20C.&rft.date=2018-10-01&rft.volume=72&rft.issue=2&rft.spage=181&rft.epage=217&rft.pages=181-217&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-018-0645-y&rft_dat=%3Cgale_proqu%3EA718423023%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019063826&rft_id=info:pmid/&rft_galeid=A718423023&rfr_iscdi=true |