Global regularity of 2D almost resistive MHD equations
Whether or not the solution to 2D resistive MHD equations is globally smooth remains open. This paper establishes the global regularity of solutions to the 2D almost resistive MHD equations, which require the dissipative operators L weaker than any power of the fractional Laplacian by taking advanta...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis: real world applications 2018-06, Vol.41, p.53-65 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Whether or not the solution to 2D resistive MHD equations is globally smooth remains open. This paper establishes the global regularity of solutions to the 2D almost resistive MHD equations, which require the dissipative operators L weaker than any power of the fractional Laplacian by taking advantage of nonlinear maximum principles. The result is an improvement of the one of Fan et al. (2014) which ask for α>0,β=1. |
---|---|
ISSN: | 1468-1218 1878-5719 |
DOI: | 10.1016/j.nonrwa.2017.10.006 |