Enhancing the efficiency of low-temperature planar perovskite solar cells by modifying the interface between perovskite and hole transport layer with polymers

In this work, planar perovskite solar cells (PSCs) based on CH3NH3PbI3 perovskite layer and low-temperature processed TiO2 have been fabricated. Polymers including poly(methylmethacrylate) (PMMA), poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-pheny- lenevinylene] (MEH-PPV) and polyethylene glycol (PEG) in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2018-01, Vol.261, p.445-453
Hauptverfasser: Cai, Yangyang, Zhang, Zongbao, Zhou, Yang, Liu, Hui, Qin, Qiqi, Lu, Xubing, Gao, Xingsen, Shui, Lingling, Wu, Sujuan, Liu, Junming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 453
container_issue
container_start_page 445
container_title Electrochimica acta
container_volume 261
creator Cai, Yangyang
Zhang, Zongbao
Zhou, Yang
Liu, Hui
Qin, Qiqi
Lu, Xubing
Gao, Xingsen
Shui, Lingling
Wu, Sujuan
Liu, Junming
description In this work, planar perovskite solar cells (PSCs) based on CH3NH3PbI3 perovskite layer and low-temperature processed TiO2 have been fabricated. Polymers including poly(methylmethacrylate) (PMMA), poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-pheny- lenevinylene] (MEH-PPV) and polyethylene glycol (PEG) in chlorobenzene solution have been selected to modify the interface between perovskite and hole transport layer (HTL), respectively. The concentrations of the three polymer solutions have been optimized. The effect of interfacial modification by different polymer solutions on the photoelectric properties of perovskite layer and the performance of PSCs has been systematically investigated. The microstructure and photoelectric properties of the modified perovskite films has been systematically studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), conducting force microscopy (CFM) and Kelvin probe force microscopy (KPFM). The results reveal that the modified perovskite films with tetrahedral perovskite structure have lager grain size, lower roughness and better photoelectric properties compared with the reference sample. The electron trap state density (Dtrap), charge extraction, carrier transfer and recombination process in the PSCs have been investigated by current-voltage (I-V) characteristic curves, steady-state photoluminescence (PL), photo-voltage decay and electrochemical impedance spectroscopy (EIS). The results indicate that the polymeric interface modification at the optimum concentration can reduce the Dtrap, promote the charge transfer and suppress carrier recombination, resulting in the improved performance of PSCs. All of the modified PSCs at an optimum concentration exhibit the improved fill factor (FF) and open circuit voltage (Voc), thus the power conversion efficiency (PCE) is enhanced to over 17% from 15.49%.
doi_str_mv 10.1016/j.electacta.2017.12.135
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2019029513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468617327007</els_id><sourcerecordid>2019029513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-7c2d8daa0bb364d3c4e97d27d07485c5eb70b4e96d76e13af6854f588584c7843</originalsourceid><addsrcrecordid>eNqFUcFq3DAQFaGFbNN-QwU525Es29IeQ0jSQiCX5CxkadTVViu5kjaLfybfGqWbhN4KA8M83nvDzEPoOyUtJXS82LbgQRdVq-0I5S3tWsqGE7SigrOGiWH9Ca0IoazpRzGeoi85bwkhfORkhZ6vw0YF7cIvXDaAwVqnHQS94Gixj4emwG6GpMo-AZ69CirhOsen_NsVwDn6CmjwPuNpwbtonF3ezVwokKzSgCcoB4Dwr1IFgzfRAy5JhTzHVLBXCyR8cGWD5-iXHaT8FX22ymf49tbP0OPN9cPVj-bu_vbn1eVdo5kgpeG6M8IoRaaJjb1huoc1Nx03hPdi0ANMnEwVGw0fgTJlRzH0dhBiEL3momdn6PzoO6f4Zw-5yG3cp1BXyvrTNenWA2WVxY8snWLOCayck9uptEhK5GsYcis_wngVckk7WcOoysujEuoRTw6SzH_fDMalypcmuv96vACz7Zux</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019029513</pqid></control><display><type>article</type><title>Enhancing the efficiency of low-temperature planar perovskite solar cells by modifying the interface between perovskite and hole transport layer with polymers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cai, Yangyang ; Zhang, Zongbao ; Zhou, Yang ; Liu, Hui ; Qin, Qiqi ; Lu, Xubing ; Gao, Xingsen ; Shui, Lingling ; Wu, Sujuan ; Liu, Junming</creator><creatorcontrib>Cai, Yangyang ; Zhang, Zongbao ; Zhou, Yang ; Liu, Hui ; Qin, Qiqi ; Lu, Xubing ; Gao, Xingsen ; Shui, Lingling ; Wu, Sujuan ; Liu, Junming</creatorcontrib><description>In this work, planar perovskite solar cells (PSCs) based on CH3NH3PbI3 perovskite layer and low-temperature processed TiO2 have been fabricated. Polymers including poly(methylmethacrylate) (PMMA), poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-pheny- lenevinylene] (MEH-PPV) and polyethylene glycol (PEG) in chlorobenzene solution have been selected to modify the interface between perovskite and hole transport layer (HTL), respectively. The concentrations of the three polymer solutions have been optimized. The effect of interfacial modification by different polymer solutions on the photoelectric properties of perovskite layer and the performance of PSCs has been systematically investigated. The microstructure and photoelectric properties of the modified perovskite films has been systematically studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), conducting force microscopy (CFM) and Kelvin probe force microscopy (KPFM). The results reveal that the modified perovskite films with tetrahedral perovskite structure have lager grain size, lower roughness and better photoelectric properties compared with the reference sample. The electron trap state density (Dtrap), charge extraction, carrier transfer and recombination process in the PSCs have been investigated by current-voltage (I-V) characteristic curves, steady-state photoluminescence (PL), photo-voltage decay and electrochemical impedance spectroscopy (EIS). The results indicate that the polymeric interface modification at the optimum concentration can reduce the Dtrap, promote the charge transfer and suppress carrier recombination, resulting in the improved performance of PSCs. All of the modified PSCs at an optimum concentration exhibit the improved fill factor (FF) and open circuit voltage (Voc), thus the power conversion efficiency (PCE) is enhanced to over 17% from 15.49%.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2017.12.135</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Atomic force microscopy ; Atomic structure ; Carrier recombination ; Charge density ; Charge transfer ; Current carriers ; Electrochemical impedance spectroscopy ; Electron microscopy ; Energy conversion efficiency ; Grain size ; Interface modification by polymers ; Lager ; Low temperature ; Low-temperature TiO2 compact layer ; Open circuit voltage ; Perovskite ; Perovskite structure ; Photoelectric effect ; Photoelectric properties ; Photoelectricity ; Photoluminescence ; Photovoltaic cells ; Planar perovskite solar cells ; Polyethylene glycol ; Polymers ; Polymethyl methacrylate ; Properties (attributes) ; Scanning electron microscopy ; Solar cells ; Titanium dioxide ; Transport ; X-ray diffraction</subject><ispartof>Electrochimica acta, 2018-01, Vol.261, p.445-453</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 20, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-7c2d8daa0bb364d3c4e97d27d07485c5eb70b4e96d76e13af6854f588584c7843</citedby><cites>FETCH-LOGICAL-c380t-7c2d8daa0bb364d3c4e97d27d07485c5eb70b4e96d76e13af6854f588584c7843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2017.12.135$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Cai, Yangyang</creatorcontrib><creatorcontrib>Zhang, Zongbao</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Qin, Qiqi</creatorcontrib><creatorcontrib>Lu, Xubing</creatorcontrib><creatorcontrib>Gao, Xingsen</creatorcontrib><creatorcontrib>Shui, Lingling</creatorcontrib><creatorcontrib>Wu, Sujuan</creatorcontrib><creatorcontrib>Liu, Junming</creatorcontrib><title>Enhancing the efficiency of low-temperature planar perovskite solar cells by modifying the interface between perovskite and hole transport layer with polymers</title><title>Electrochimica acta</title><description>In this work, planar perovskite solar cells (PSCs) based on CH3NH3PbI3 perovskite layer and low-temperature processed TiO2 have been fabricated. Polymers including poly(methylmethacrylate) (PMMA), poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-pheny- lenevinylene] (MEH-PPV) and polyethylene glycol (PEG) in chlorobenzene solution have been selected to modify the interface between perovskite and hole transport layer (HTL), respectively. The concentrations of the three polymer solutions have been optimized. The effect of interfacial modification by different polymer solutions on the photoelectric properties of perovskite layer and the performance of PSCs has been systematically investigated. The microstructure and photoelectric properties of the modified perovskite films has been systematically studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), conducting force microscopy (CFM) and Kelvin probe force microscopy (KPFM). The results reveal that the modified perovskite films with tetrahedral perovskite structure have lager grain size, lower roughness and better photoelectric properties compared with the reference sample. The electron trap state density (Dtrap), charge extraction, carrier transfer and recombination process in the PSCs have been investigated by current-voltage (I-V) characteristic curves, steady-state photoluminescence (PL), photo-voltage decay and electrochemical impedance spectroscopy (EIS). The results indicate that the polymeric interface modification at the optimum concentration can reduce the Dtrap, promote the charge transfer and suppress carrier recombination, resulting in the improved performance of PSCs. All of the modified PSCs at an optimum concentration exhibit the improved fill factor (FF) and open circuit voltage (Voc), thus the power conversion efficiency (PCE) is enhanced to over 17% from 15.49%.</description><subject>Atomic force microscopy</subject><subject>Atomic structure</subject><subject>Carrier recombination</subject><subject>Charge density</subject><subject>Charge transfer</subject><subject>Current carriers</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electron microscopy</subject><subject>Energy conversion efficiency</subject><subject>Grain size</subject><subject>Interface modification by polymers</subject><subject>Lager</subject><subject>Low temperature</subject><subject>Low-temperature TiO2 compact layer</subject><subject>Open circuit voltage</subject><subject>Perovskite</subject><subject>Perovskite structure</subject><subject>Photoelectric effect</subject><subject>Photoelectric properties</subject><subject>Photoelectricity</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Planar perovskite solar cells</subject><subject>Polyethylene glycol</subject><subject>Polymers</subject><subject>Polymethyl methacrylate</subject><subject>Properties (attributes)</subject><subject>Scanning electron microscopy</subject><subject>Solar cells</subject><subject>Titanium dioxide</subject><subject>Transport</subject><subject>X-ray diffraction</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUcFq3DAQFaGFbNN-QwU525Es29IeQ0jSQiCX5CxkadTVViu5kjaLfybfGqWbhN4KA8M83nvDzEPoOyUtJXS82LbgQRdVq-0I5S3tWsqGE7SigrOGiWH9Ca0IoazpRzGeoi85bwkhfORkhZ6vw0YF7cIvXDaAwVqnHQS94Gixj4emwG6GpMo-AZ69CirhOsen_NsVwDn6CmjwPuNpwbtonF3ezVwokKzSgCcoB4Dwr1IFgzfRAy5JhTzHVLBXCyR8cGWD5-iXHaT8FX22ymf49tbP0OPN9cPVj-bu_vbn1eVdo5kgpeG6M8IoRaaJjb1huoc1Nx03hPdi0ANMnEwVGw0fgTJlRzH0dhBiEL3momdn6PzoO6f4Zw-5yG3cp1BXyvrTNenWA2WVxY8snWLOCayck9uptEhK5GsYcis_wngVckk7WcOoysujEuoRTw6SzH_fDMalypcmuv96vACz7Zux</recordid><startdate>20180120</startdate><enddate>20180120</enddate><creator>Cai, Yangyang</creator><creator>Zhang, Zongbao</creator><creator>Zhou, Yang</creator><creator>Liu, Hui</creator><creator>Qin, Qiqi</creator><creator>Lu, Xubing</creator><creator>Gao, Xingsen</creator><creator>Shui, Lingling</creator><creator>Wu, Sujuan</creator><creator>Liu, Junming</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180120</creationdate><title>Enhancing the efficiency of low-temperature planar perovskite solar cells by modifying the interface between perovskite and hole transport layer with polymers</title><author>Cai, Yangyang ; Zhang, Zongbao ; Zhou, Yang ; Liu, Hui ; Qin, Qiqi ; Lu, Xubing ; Gao, Xingsen ; Shui, Lingling ; Wu, Sujuan ; Liu, Junming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-7c2d8daa0bb364d3c4e97d27d07485c5eb70b4e96d76e13af6854f588584c7843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic force microscopy</topic><topic>Atomic structure</topic><topic>Carrier recombination</topic><topic>Charge density</topic><topic>Charge transfer</topic><topic>Current carriers</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electron microscopy</topic><topic>Energy conversion efficiency</topic><topic>Grain size</topic><topic>Interface modification by polymers</topic><topic>Lager</topic><topic>Low temperature</topic><topic>Low-temperature TiO2 compact layer</topic><topic>Open circuit voltage</topic><topic>Perovskite</topic><topic>Perovskite structure</topic><topic>Photoelectric effect</topic><topic>Photoelectric properties</topic><topic>Photoelectricity</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Planar perovskite solar cells</topic><topic>Polyethylene glycol</topic><topic>Polymers</topic><topic>Polymethyl methacrylate</topic><topic>Properties (attributes)</topic><topic>Scanning electron microscopy</topic><topic>Solar cells</topic><topic>Titanium dioxide</topic><topic>Transport</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Yangyang</creatorcontrib><creatorcontrib>Zhang, Zongbao</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Qin, Qiqi</creatorcontrib><creatorcontrib>Lu, Xubing</creatorcontrib><creatorcontrib>Gao, Xingsen</creatorcontrib><creatorcontrib>Shui, Lingling</creatorcontrib><creatorcontrib>Wu, Sujuan</creatorcontrib><creatorcontrib>Liu, Junming</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Yangyang</au><au>Zhang, Zongbao</au><au>Zhou, Yang</au><au>Liu, Hui</au><au>Qin, Qiqi</au><au>Lu, Xubing</au><au>Gao, Xingsen</au><au>Shui, Lingling</au><au>Wu, Sujuan</au><au>Liu, Junming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the efficiency of low-temperature planar perovskite solar cells by modifying the interface between perovskite and hole transport layer with polymers</atitle><jtitle>Electrochimica acta</jtitle><date>2018-01-20</date><risdate>2018</risdate><volume>261</volume><spage>445</spage><epage>453</epage><pages>445-453</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>In this work, planar perovskite solar cells (PSCs) based on CH3NH3PbI3 perovskite layer and low-temperature processed TiO2 have been fabricated. Polymers including poly(methylmethacrylate) (PMMA), poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-pheny- lenevinylene] (MEH-PPV) and polyethylene glycol (PEG) in chlorobenzene solution have been selected to modify the interface between perovskite and hole transport layer (HTL), respectively. The concentrations of the three polymer solutions have been optimized. The effect of interfacial modification by different polymer solutions on the photoelectric properties of perovskite layer and the performance of PSCs has been systematically investigated. The microstructure and photoelectric properties of the modified perovskite films has been systematically studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), conducting force microscopy (CFM) and Kelvin probe force microscopy (KPFM). The results reveal that the modified perovskite films with tetrahedral perovskite structure have lager grain size, lower roughness and better photoelectric properties compared with the reference sample. The electron trap state density (Dtrap), charge extraction, carrier transfer and recombination process in the PSCs have been investigated by current-voltage (I-V) characteristic curves, steady-state photoluminescence (PL), photo-voltage decay and electrochemical impedance spectroscopy (EIS). The results indicate that the polymeric interface modification at the optimum concentration can reduce the Dtrap, promote the charge transfer and suppress carrier recombination, resulting in the improved performance of PSCs. All of the modified PSCs at an optimum concentration exhibit the improved fill factor (FF) and open circuit voltage (Voc), thus the power conversion efficiency (PCE) is enhanced to over 17% from 15.49%.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2017.12.135</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2018-01, Vol.261, p.445-453
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2019029513
source Access via ScienceDirect (Elsevier)
subjects Atomic force microscopy
Atomic structure
Carrier recombination
Charge density
Charge transfer
Current carriers
Electrochemical impedance spectroscopy
Electron microscopy
Energy conversion efficiency
Grain size
Interface modification by polymers
Lager
Low temperature
Low-temperature TiO2 compact layer
Open circuit voltage
Perovskite
Perovskite structure
Photoelectric effect
Photoelectric properties
Photoelectricity
Photoluminescence
Photovoltaic cells
Planar perovskite solar cells
Polyethylene glycol
Polymers
Polymethyl methacrylate
Properties (attributes)
Scanning electron microscopy
Solar cells
Titanium dioxide
Transport
X-ray diffraction
title Enhancing the efficiency of low-temperature planar perovskite solar cells by modifying the interface between perovskite and hole transport layer with polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20efficiency%20of%20low-temperature%20planar%20perovskite%20solar%20cells%20by%20modifying%20the%20interface%20between%20perovskite%20and%20hole%20transport%20layer%20with%20polymers&rft.jtitle=Electrochimica%20acta&rft.au=Cai,%20Yangyang&rft.date=2018-01-20&rft.volume=261&rft.spage=445&rft.epage=453&rft.pages=445-453&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2017.12.135&rft_dat=%3Cproquest_cross%3E2019029513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019029513&rft_id=info:pmid/&rft_els_id=S0013468617327007&rfr_iscdi=true