Heat transfer by water flowing through rough fractures and distribution of local heat transfer coefficient along the flow direction
•Local heat transfer coefficients (LHTC) in rough fracture flow passage were obtained.•The value of JRC was used to evaluate the roughness of fractures.•The 3D printing technique was adopted to produce different rough fractures.•The effect of fracture surface tortuosity on the distribution of LHTC w...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2018-04, Vol.119, p.139-147 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | |
container_start_page | 139 |
container_title | International journal of heat and mass transfer |
container_volume | 119 |
creator | Ma, Yueqiang Zhang, Yanjun Yu, Ziwang Huang, Yibin Zhang, Chi |
description | •Local heat transfer coefficients (LHTC) in rough fracture flow passage were obtained.•The value of JRC was used to evaluate the roughness of fractures.•The 3D printing technique was adopted to produce different rough fractures.•The effect of fracture surface tortuosity on the distribution of LHTC were discussed.
Heat transfer coefficient is a significant parameter that can describe the characteristics of the heat transfer process of fluid through fracture surface and can be used to predict hot water production from an enhanced geothermal reservoir and conventional geothermal systems. This study adopted numerical and experimental approaches that produce specimen with different rough surfaces through a 3D printing technique to improve the understanding of the heat transfer characteristics of water flowing through rough fractures and the distribution of local heat transfer coefficient along the flow direction. Results indicate that the local heat transfer coefficient increases to the maximum at the inlet and then decreases to a relatively constant value further along the flow direction. In addition, fracture surface tortuosity influences the local fluctuations. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2017.11.102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2019028309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931017332040</els_id><sourcerecordid>2019028309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-5107acebb1e957976fc14eb65c52f220b58bb1b28f4cac1bec43968a0eec1b6e3</originalsourceid><addsrcrecordid>eNqNkD9PwzAQxS0EEqXwHSyxsKT4nP8bqAIKqsQCs-W4Z-ooxGA7VMx8cRwCA2Jh8fn03v1O9wg5A7YABsV5uzDtFmV4lt4HJ3uv0S04g3IBEB18j8ygKuuEQ1XvkxmLSlKnwA7Jkfft2LKsmJGPVWTQHwBt3ulOhvjRnd2Z_omGrbPD05ZOr3ZShcGhp7Lf0I2Jm00zBGN7ajXtrJId3f4CKotaG2WwD1R29ouIX_Q47lCNs8fkQMvO48l3nZPH66uH5SpZ39_cLi_XicogDUkOrJQKmwawzsu6LLSCDJsiVznXnLMmr6LW8EpnSipoUGVpXVSSIcauwHROTifui7OvA_ogWju4Pq4UMbia8SpldXRdTC7lrPcOtXhx5lm6dwFMjNGLVvyNfiSUAiA6eETcTQiM17yZqPoxAYXTyWJjzf9hn-JcnYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019028309</pqid></control><display><type>article</type><title>Heat transfer by water flowing through rough fractures and distribution of local heat transfer coefficient along the flow direction</title><source>Elsevier ScienceDirect Journals</source><creator>Ma, Yueqiang ; Zhang, Yanjun ; Yu, Ziwang ; Huang, Yibin ; Zhang, Chi</creator><creatorcontrib>Ma, Yueqiang ; Zhang, Yanjun ; Yu, Ziwang ; Huang, Yibin ; Zhang, Chi</creatorcontrib><description>•Local heat transfer coefficients (LHTC) in rough fracture flow passage were obtained.•The value of JRC was used to evaluate the roughness of fractures.•The 3D printing technique was adopted to produce different rough fractures.•The effect of fracture surface tortuosity on the distribution of LHTC were discussed.
Heat transfer coefficient is a significant parameter that can describe the characteristics of the heat transfer process of fluid through fracture surface and can be used to predict hot water production from an enhanced geothermal reservoir and conventional geothermal systems. This study adopted numerical and experimental approaches that produce specimen with different rough surfaces through a 3D printing technique to improve the understanding of the heat transfer characteristics of water flowing through rough fractures and the distribution of local heat transfer coefficient along the flow direction. Results indicate that the local heat transfer coefficient increases to the maximum at the inlet and then decreases to a relatively constant value further along the flow direction. In addition, fracture surface tortuosity influences the local fluctuations.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2017.11.102</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>3-D printers ; Geothermal power ; Heat transfer ; Heat transfer coefficients ; Hot water heating ; Joint roughness coefficient ; Local heat transfer coefficient ; Rough fracture ; Three dimensional printing ; Tortuosity ; Variations</subject><ispartof>International journal of heat and mass transfer, 2018-04, Vol.119, p.139-147</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-5107acebb1e957976fc14eb65c52f220b58bb1b28f4cac1bec43968a0eec1b6e3</citedby><cites>FETCH-LOGICAL-c413t-5107acebb1e957976fc14eb65c52f220b58bb1b28f4cac1bec43968a0eec1b6e3</cites><orcidid>0000-0002-1505-9422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931017332040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ma, Yueqiang</creatorcontrib><creatorcontrib>Zhang, Yanjun</creatorcontrib><creatorcontrib>Yu, Ziwang</creatorcontrib><creatorcontrib>Huang, Yibin</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><title>Heat transfer by water flowing through rough fractures and distribution of local heat transfer coefficient along the flow direction</title><title>International journal of heat and mass transfer</title><description>•Local heat transfer coefficients (LHTC) in rough fracture flow passage were obtained.•The value of JRC was used to evaluate the roughness of fractures.•The 3D printing technique was adopted to produce different rough fractures.•The effect of fracture surface tortuosity on the distribution of LHTC were discussed.
Heat transfer coefficient is a significant parameter that can describe the characteristics of the heat transfer process of fluid through fracture surface and can be used to predict hot water production from an enhanced geothermal reservoir and conventional geothermal systems. This study adopted numerical and experimental approaches that produce specimen with different rough surfaces through a 3D printing technique to improve the understanding of the heat transfer characteristics of water flowing through rough fractures and the distribution of local heat transfer coefficient along the flow direction. Results indicate that the local heat transfer coefficient increases to the maximum at the inlet and then decreases to a relatively constant value further along the flow direction. In addition, fracture surface tortuosity influences the local fluctuations.</description><subject>3-D printers</subject><subject>Geothermal power</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Hot water heating</subject><subject>Joint roughness coefficient</subject><subject>Local heat transfer coefficient</subject><subject>Rough fracture</subject><subject>Three dimensional printing</subject><subject>Tortuosity</subject><subject>Variations</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkD9PwzAQxS0EEqXwHSyxsKT4nP8bqAIKqsQCs-W4Z-ooxGA7VMx8cRwCA2Jh8fn03v1O9wg5A7YABsV5uzDtFmV4lt4HJ3uv0S04g3IBEB18j8ygKuuEQ1XvkxmLSlKnwA7Jkfft2LKsmJGPVWTQHwBt3ulOhvjRnd2Z_omGrbPD05ZOr3ZShcGhp7Lf0I2Jm00zBGN7ajXtrJId3f4CKotaG2WwD1R29ouIX_Q47lCNs8fkQMvO48l3nZPH66uH5SpZ39_cLi_XicogDUkOrJQKmwawzsu6LLSCDJsiVznXnLMmr6LW8EpnSipoUGVpXVSSIcauwHROTifui7OvA_ogWju4Pq4UMbia8SpldXRdTC7lrPcOtXhx5lm6dwFMjNGLVvyNfiSUAiA6eETcTQiM17yZqPoxAYXTyWJjzf9hn-JcnYk</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Ma, Yueqiang</creator><creator>Zhang, Yanjun</creator><creator>Yu, Ziwang</creator><creator>Huang, Yibin</creator><creator>Zhang, Chi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1505-9422</orcidid></search><sort><creationdate>20180401</creationdate><title>Heat transfer by water flowing through rough fractures and distribution of local heat transfer coefficient along the flow direction</title><author>Ma, Yueqiang ; Zhang, Yanjun ; Yu, Ziwang ; Huang, Yibin ; Zhang, Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-5107acebb1e957976fc14eb65c52f220b58bb1b28f4cac1bec43968a0eec1b6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3-D printers</topic><topic>Geothermal power</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Hot water heating</topic><topic>Joint roughness coefficient</topic><topic>Local heat transfer coefficient</topic><topic>Rough fracture</topic><topic>Three dimensional printing</topic><topic>Tortuosity</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yueqiang</creatorcontrib><creatorcontrib>Zhang, Yanjun</creatorcontrib><creatorcontrib>Yu, Ziwang</creatorcontrib><creatorcontrib>Huang, Yibin</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Yueqiang</au><au>Zhang, Yanjun</au><au>Yu, Ziwang</au><au>Huang, Yibin</au><au>Zhang, Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat transfer by water flowing through rough fractures and distribution of local heat transfer coefficient along the flow direction</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>119</volume><spage>139</spage><epage>147</epage><pages>139-147</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Local heat transfer coefficients (LHTC) in rough fracture flow passage were obtained.•The value of JRC was used to evaluate the roughness of fractures.•The 3D printing technique was adopted to produce different rough fractures.•The effect of fracture surface tortuosity on the distribution of LHTC were discussed.
Heat transfer coefficient is a significant parameter that can describe the characteristics of the heat transfer process of fluid through fracture surface and can be used to predict hot water production from an enhanced geothermal reservoir and conventional geothermal systems. This study adopted numerical and experimental approaches that produce specimen with different rough surfaces through a 3D printing technique to improve the understanding of the heat transfer characteristics of water flowing through rough fractures and the distribution of local heat transfer coefficient along the flow direction. Results indicate that the local heat transfer coefficient increases to the maximum at the inlet and then decreases to a relatively constant value further along the flow direction. In addition, fracture surface tortuosity influences the local fluctuations.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2017.11.102</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1505-9422</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2018-04, Vol.119, p.139-147 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_journals_2019028309 |
source | Elsevier ScienceDirect Journals |
subjects | 3-D printers Geothermal power Heat transfer Heat transfer coefficients Hot water heating Joint roughness coefficient Local heat transfer coefficient Rough fracture Three dimensional printing Tortuosity Variations |
title | Heat transfer by water flowing through rough fractures and distribution of local heat transfer coefficient along the flow direction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A35%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20transfer%20by%20water%20flowing%20through%20rough%20fractures%20and%20distribution%20of%20local%20heat%20transfer%20coefficient%20along%20the%20flow%20direction&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Ma,%20Yueqiang&rft.date=2018-04-01&rft.volume=119&rft.spage=139&rft.epage=147&rft.pages=139-147&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2017.11.102&rft_dat=%3Cproquest_cross%3E2019028309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019028309&rft_id=info:pmid/&rft_els_id=S0017931017332040&rfr_iscdi=true |