A data reduction strategy and its application on scan and backscatter detection using rule-based classifiers
•A novel data reduction strategy is presented.•Multi measure strategy is used to reduce the number of features.•Training data is significantly reduced, without greatly affecting the IDS accuracy.•Boost up the detection process speed.•Does not require large computational resources to process a huge a...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2018-04, Vol.95, p.272-279 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 279 |
---|---|
container_issue | |
container_start_page | 272 |
container_title | Expert systems with applications |
container_volume | 95 |
creator | Herrera-Semenets, Vitali Andrés Pérez-García, Osvaldo Hernández-León, Raudel van den Berg, Jan Doerr, Christian |
description | •A novel data reduction strategy is presented.•Multi measure strategy is used to reduce the number of features.•Training data is significantly reduced, without greatly affecting the IDS accuracy.•Boost up the detection process speed.•Does not require large computational resources to process a huge amount of data.
In the last few years, the telecommunications scenario has experienced an increase in the volume of information generated, as well as in the execution of malicious activities. In order to complement Intrusion Detection Systems (IDSs), data mining techniques have begun to play a fundamental role in data analysis. On the other hand, the presence of useless information and the amount of data generated by telecommunication services (leading to a huge dimensional problem), can affect the performance of traditional IDSs. In this sense, a data preprocessing strategy is necessary to reduce data, but reducing data without affecting the accuracy of IDSs represents a challenge. In this paper, we propose a new data preprocessing strategy which reduces the number of features and instances in the training collection without greatly affecting the achieved accuracy of IDSs. Finally, our proposal is evaluated using four different rule-based classifiers, which are tested on real scan and backscatter data collected by a network telescope. |
doi_str_mv | 10.1016/j.eswa.2017.11.041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2019028281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417417307972</els_id><sourcerecordid>2019028281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-491a49ee1b8421e0759c4ae6d4042842acf51a81a6356fa1d6f5a5c1b62d41de3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssU7wJM5LYlNVvKRKbGBtTexJ5RKSYjsg_h63Yc3Ksu89Hvswdg0iBQHl7S4l_41pJqBKAVIh4YQtoK7ypKya_JQtRFNUiYRKnrML73ciFoWoFqxfcYMBuSMz6WDHgfvgMND2h-NguA2e437fW43H8JBrHI5Zi_o9bkIgxw0FmvHJ22HL3dRT0qInw3WP3tvOkvOX7KzD3tPV37pkbw_3r-unZPPy-LxebRItMxES2QDKhgjaWmZAoioaLZFKI4XM4hHqrgCsAcu8KDsEU3YFFhraMjMSDOVLdjPfu3fj50Q-qN04uSGOVNFQI7I6qyG2srml3ei9o07tnf1A96NAqINVtVMHqwemUgAqWo3Q3QxRfP9X_JTy2tKgyVgXDSgz2v_wX8mbgcY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019028281</pqid></control><display><type>article</type><title>A data reduction strategy and its application on scan and backscatter detection using rule-based classifiers</title><source>Elsevier ScienceDirect Journals</source><creator>Herrera-Semenets, Vitali ; Andrés Pérez-García, Osvaldo ; Hernández-León, Raudel ; van den Berg, Jan ; Doerr, Christian</creator><creatorcontrib>Herrera-Semenets, Vitali ; Andrés Pérez-García, Osvaldo ; Hernández-León, Raudel ; van den Berg, Jan ; Doerr, Christian</creatorcontrib><description>•A novel data reduction strategy is presented.•Multi measure strategy is used to reduce the number of features.•Training data is significantly reduced, without greatly affecting the IDS accuracy.•Boost up the detection process speed.•Does not require large computational resources to process a huge amount of data.
In the last few years, the telecommunications scenario has experienced an increase in the volume of information generated, as well as in the execution of malicious activities. In order to complement Intrusion Detection Systems (IDSs), data mining techniques have begun to play a fundamental role in data analysis. On the other hand, the presence of useless information and the amount of data generated by telecommunication services (leading to a huge dimensional problem), can affect the performance of traditional IDSs. In this sense, a data preprocessing strategy is necessary to reduce data, but reducing data without affecting the accuracy of IDSs represents a challenge. In this paper, we propose a new data preprocessing strategy which reduces the number of features and instances in the training collection without greatly affecting the achieved accuracy of IDSs. Finally, our proposal is evaluated using four different rule-based classifiers, which are tested on real scan and backscatter data collected by a network telescope.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2017.11.041</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Backscatter ; Backscattering ; Classifiers ; Cybersecurity ; Data analysis ; Data mining ; Data reduction ; Information ; Intrusion detection ; Intrusion detection systems ; Preprocessing ; Scan ; Strategy ; Telecommunications</subject><ispartof>Expert systems with applications, 2018-04, Vol.95, p.272-279</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-491a49ee1b8421e0759c4ae6d4042842acf51a81a6356fa1d6f5a5c1b62d41de3</citedby><cites>FETCH-LOGICAL-c420t-491a49ee1b8421e0759c4ae6d4042842acf51a81a6356fa1d6f5a5c1b62d41de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417417307972$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Herrera-Semenets, Vitali</creatorcontrib><creatorcontrib>Andrés Pérez-García, Osvaldo</creatorcontrib><creatorcontrib>Hernández-León, Raudel</creatorcontrib><creatorcontrib>van den Berg, Jan</creatorcontrib><creatorcontrib>Doerr, Christian</creatorcontrib><title>A data reduction strategy and its application on scan and backscatter detection using rule-based classifiers</title><title>Expert systems with applications</title><description>•A novel data reduction strategy is presented.•Multi measure strategy is used to reduce the number of features.•Training data is significantly reduced, without greatly affecting the IDS accuracy.•Boost up the detection process speed.•Does not require large computational resources to process a huge amount of data.
In the last few years, the telecommunications scenario has experienced an increase in the volume of information generated, as well as in the execution of malicious activities. In order to complement Intrusion Detection Systems (IDSs), data mining techniques have begun to play a fundamental role in data analysis. On the other hand, the presence of useless information and the amount of data generated by telecommunication services (leading to a huge dimensional problem), can affect the performance of traditional IDSs. In this sense, a data preprocessing strategy is necessary to reduce data, but reducing data without affecting the accuracy of IDSs represents a challenge. In this paper, we propose a new data preprocessing strategy which reduces the number of features and instances in the training collection without greatly affecting the achieved accuracy of IDSs. Finally, our proposal is evaluated using four different rule-based classifiers, which are tested on real scan and backscatter data collected by a network telescope.</description><subject>Backscatter</subject><subject>Backscattering</subject><subject>Classifiers</subject><subject>Cybersecurity</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data reduction</subject><subject>Information</subject><subject>Intrusion detection</subject><subject>Intrusion detection systems</subject><subject>Preprocessing</subject><subject>Scan</subject><subject>Strategy</subject><subject>Telecommunications</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssU7wJM5LYlNVvKRKbGBtTexJ5RKSYjsg_h63Yc3Ksu89Hvswdg0iBQHl7S4l_41pJqBKAVIh4YQtoK7ypKya_JQtRFNUiYRKnrML73ciFoWoFqxfcYMBuSMz6WDHgfvgMND2h-NguA2e437fW43H8JBrHI5Zi_o9bkIgxw0FmvHJ22HL3dRT0qInw3WP3tvOkvOX7KzD3tPV37pkbw_3r-unZPPy-LxebRItMxES2QDKhgjaWmZAoioaLZFKI4XM4hHqrgCsAcu8KDsEU3YFFhraMjMSDOVLdjPfu3fj50Q-qN04uSGOVNFQI7I6qyG2srml3ei9o07tnf1A96NAqINVtVMHqwemUgAqWo3Q3QxRfP9X_JTy2tKgyVgXDSgz2v_wX8mbgcY</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Herrera-Semenets, Vitali</creator><creator>Andrés Pérez-García, Osvaldo</creator><creator>Hernández-León, Raudel</creator><creator>van den Berg, Jan</creator><creator>Doerr, Christian</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180401</creationdate><title>A data reduction strategy and its application on scan and backscatter detection using rule-based classifiers</title><author>Herrera-Semenets, Vitali ; Andrés Pérez-García, Osvaldo ; Hernández-León, Raudel ; van den Berg, Jan ; Doerr, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-491a49ee1b8421e0759c4ae6d4042842acf51a81a6356fa1d6f5a5c1b62d41de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Backscatter</topic><topic>Backscattering</topic><topic>Classifiers</topic><topic>Cybersecurity</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data reduction</topic><topic>Information</topic><topic>Intrusion detection</topic><topic>Intrusion detection systems</topic><topic>Preprocessing</topic><topic>Scan</topic><topic>Strategy</topic><topic>Telecommunications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrera-Semenets, Vitali</creatorcontrib><creatorcontrib>Andrés Pérez-García, Osvaldo</creatorcontrib><creatorcontrib>Hernández-León, Raudel</creatorcontrib><creatorcontrib>van den Berg, Jan</creatorcontrib><creatorcontrib>Doerr, Christian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrera-Semenets, Vitali</au><au>Andrés Pérez-García, Osvaldo</au><au>Hernández-León, Raudel</au><au>van den Berg, Jan</au><au>Doerr, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data reduction strategy and its application on scan and backscatter detection using rule-based classifiers</atitle><jtitle>Expert systems with applications</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>95</volume><spage>272</spage><epage>279</epage><pages>272-279</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•A novel data reduction strategy is presented.•Multi measure strategy is used to reduce the number of features.•Training data is significantly reduced, without greatly affecting the IDS accuracy.•Boost up the detection process speed.•Does not require large computational resources to process a huge amount of data.
In the last few years, the telecommunications scenario has experienced an increase in the volume of information generated, as well as in the execution of malicious activities. In order to complement Intrusion Detection Systems (IDSs), data mining techniques have begun to play a fundamental role in data analysis. On the other hand, the presence of useless information and the amount of data generated by telecommunication services (leading to a huge dimensional problem), can affect the performance of traditional IDSs. In this sense, a data preprocessing strategy is necessary to reduce data, but reducing data without affecting the accuracy of IDSs represents a challenge. In this paper, we propose a new data preprocessing strategy which reduces the number of features and instances in the training collection without greatly affecting the achieved accuracy of IDSs. Finally, our proposal is evaluated using four different rule-based classifiers, which are tested on real scan and backscatter data collected by a network telescope.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2017.11.041</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2018-04, Vol.95, p.272-279 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_journals_2019028281 |
source | Elsevier ScienceDirect Journals |
subjects | Backscatter Backscattering Classifiers Cybersecurity Data analysis Data mining Data reduction Information Intrusion detection Intrusion detection systems Preprocessing Scan Strategy Telecommunications |
title | A data reduction strategy and its application on scan and backscatter detection using rule-based classifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data%20reduction%20strategy%20and%20its%20application%20on%20scan%20and%20backscatter%20detection%20using%20rule-based%20classifiers&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Herrera-Semenets,%20Vitali&rft.date=2018-04-01&rft.volume=95&rft.spage=272&rft.epage=279&rft.pages=272-279&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2017.11.041&rft_dat=%3Cproquest_cross%3E2019028281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019028281&rft_id=info:pmid/&rft_els_id=S0957417417307972&rfr_iscdi=true |