LPS‑induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF‑κB, STAT3 or AP‑1 activation

Lipopolysaccharide (LPS), the major outer surface membrane component of Gram-negative bacteria, is one of the main etiological factors in the pathogenesis of several lung diseases, such as chronic obstructive pulmonary disease. The respiratory epithelium and the macrophages comprise the dynamic inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular medicine reports 2018-04, Vol.17 (4), p.5484-5491
Hauptverfasser: Liu, Xuefang, Yin, Sugai, Chen, Yulong, Wu, Yaosong, Zheng, Wanchun, Dong, Haoran, Bai, Yan, Qin, Yanqin, Li, Jiansheng, Feng, Suxiang, Zhao, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5491
container_issue 4
container_start_page 5484
container_title Molecular medicine reports
container_volume 17
creator Liu, Xuefang
Yin, Sugai
Chen, Yulong
Wu, Yaosong
Zheng, Wanchun
Dong, Haoran
Bai, Yan
Qin, Yanqin
Li, Jiansheng
Feng, Suxiang
Zhao, Peng
description Lipopolysaccharide (LPS), the major outer surface membrane component of Gram-negative bacteria, is one of the main etiological factors in the pathogenesis of several lung diseases, such as chronic obstructive pulmonary disease. The respiratory epithelium and the macrophages comprise the dynamic interface between the outside environment and the host response to bacterial infection via cytokine secretion. In the present study, the mechanisms of LPS induced‑inflammatory response in human lung cells and macrophages were investigated. The effects of LPS exposure on cytokine production, inflammation‑related transcription factors and intracellular signaling pathway activation were assessed in human lung mucoepidermoid carcinoma H292 cells and human macrophage THP‑1 cells. The results demonstrated that LPS markedly increased the expression of interleukin (IL)‑6, IL‑8, tumor necrosis factor (TNF)‑α, matrix metallopeptidase (MMP)‑9 and tissue inhibitor of metalloproteinases‑1 in H292 cells, while it increased the production of IL‑6, IL‑8 and TNF‑α in differentiated THP‑1 cells. In addition, LPS exposure activated nuclear factor (NF)‑κB and activator protein (AP)‑1 signaling in H292 cells, while it activated NF‑κB and signal transducer and activator of transcription (STAT) 3 signaling in THP‑1 cells. Furthermore, treatment with NF‑κB, AP‑1 or STAT3 inhibitors significantly decreased the LPS‑mediated expression of IL‑8 and TNF‑α in these cells, suggesting that these pathways might serve crucial roles in LPS‑induced cytokine expression. In conclusion, LPS stimulation of H292 and THP‑1 cells induced cytokine expression and NF‑κB, mitogen‑activated protein kinase and Janus kinase/STAT3 pathway activation with subsequent nuclear translocation of NF‑κB, AP‑1 and STAT3, which demonstrated potential of the use of NF‑κB, AP‑1 and STAT3 in therapies for conditions and diseases associated with chronic inflammation.
doi_str_mv 10.3892/mmr.2018.8542
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2018987602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2018987602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2752-a21fefed5b540a4c0c746d5468546e023819542cc604ba9caefd124b0ef2fca83</originalsourceid><addsrcrecordid>eNo9kLtOAzEQRS0E4hEoaZElWjbYXu_DZUC8pAiQCPVq4p0lhn1h7wLp6Kn4HT6Cj-BLcCBQzWh0517dQ8guZ8MwVeKwquxQMJ4O00iKFbLJE8WDkDG5utyFUskG2XLunrE4EpFaJxtChSqUMdskb-Prm6_Xd1PnvcactrYxdVFCVUHX2DnV8655MDVSfGktOmeampqazvoKagrGPsOcYmu6GZYGSqqxLB2FOqcVaNu0M7hDR58M0MtTn_L5cXRAbyajSUgbS0fX_sQp6M48Qeedt8laAaXDneUckNvTk8nxeTC-Ors4Ho0DLZJIBCB4gQXm0TSSDKRmOpFxHsnYE4iRiTDlyrPQOmZyCkoDFjkXcsqwEIWGNByQ_V9f3_axR9dl901vax-ZLUiqNIm9y4AEvypfxDmLRdZaU4GdZ5xlC_SZR__zkC3Qe_3e0rWfVpj_q_9Yh9_h24Qz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2018987602</pqid></control><display><type>article</type><title>LPS‑induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF‑κB, STAT3 or AP‑1 activation</title><source>Spandidos Publications Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Xuefang ; Yin, Sugai ; Chen, Yulong ; Wu, Yaosong ; Zheng, Wanchun ; Dong, Haoran ; Bai, Yan ; Qin, Yanqin ; Li, Jiansheng ; Feng, Suxiang ; Zhao, Peng</creator><creatorcontrib>Liu, Xuefang ; Yin, Sugai ; Chen, Yulong ; Wu, Yaosong ; Zheng, Wanchun ; Dong, Haoran ; Bai, Yan ; Qin, Yanqin ; Li, Jiansheng ; Feng, Suxiang ; Zhao, Peng</creatorcontrib><description>Lipopolysaccharide (LPS), the major outer surface membrane component of Gram-negative bacteria, is one of the main etiological factors in the pathogenesis of several lung diseases, such as chronic obstructive pulmonary disease. The respiratory epithelium and the macrophages comprise the dynamic interface between the outside environment and the host response to bacterial infection via cytokine secretion. In the present study, the mechanisms of LPS induced‑inflammatory response in human lung cells and macrophages were investigated. The effects of LPS exposure on cytokine production, inflammation‑related transcription factors and intracellular signaling pathway activation were assessed in human lung mucoepidermoid carcinoma H292 cells and human macrophage THP‑1 cells. The results demonstrated that LPS markedly increased the expression of interleukin (IL)‑6, IL‑8, tumor necrosis factor (TNF)‑α, matrix metallopeptidase (MMP)‑9 and tissue inhibitor of metalloproteinases‑1 in H292 cells, while it increased the production of IL‑6, IL‑8 and TNF‑α in differentiated THP‑1 cells. In addition, LPS exposure activated nuclear factor (NF)‑κB and activator protein (AP)‑1 signaling in H292 cells, while it activated NF‑κB and signal transducer and activator of transcription (STAT) 3 signaling in THP‑1 cells. Furthermore, treatment with NF‑κB, AP‑1 or STAT3 inhibitors significantly decreased the LPS‑mediated expression of IL‑8 and TNF‑α in these cells, suggesting that these pathways might serve crucial roles in LPS‑induced cytokine expression. In conclusion, LPS stimulation of H292 and THP‑1 cells induced cytokine expression and NF‑κB, mitogen‑activated protein kinase and Janus kinase/STAT3 pathway activation with subsequent nuclear translocation of NF‑κB, AP‑1 and STAT3, which demonstrated potential of the use of NF‑κB, AP‑1 and STAT3 in therapies for conditions and diseases associated with chronic inflammation.</description><identifier>ISSN: 1791-2997</identifier><identifier>EISSN: 1791-3004</identifier><identifier>DOI: 10.3892/mmr.2018.8542</identifier><identifier>PMID: 29393460</identifier><language>eng</language><publisher>Greece: Spandidos Publications UK Ltd</publisher><subject>Activator protein 1 ; Bacterial infections ; Biomarkers ; Biotechnology ; Cell activation ; Cell culture ; Cell Line ; Cell Survival ; Chronic obstructive pulmonary disease ; Cytokines ; Cytokines - genetics ; Cytokines - metabolism ; Deoxyribonucleic acid ; DNA ; Epithelial cells ; Epithelial Cells - metabolism ; Epithelium ; Gene Expression Regulation - drug effects ; Gram-negative bacteria ; Humans ; Inflammation ; Inflammation Mediators - metabolism ; Interleukin 6 ; Interleukin 8 ; Intracellular signalling ; Janus kinase ; Kinases ; Lipopolysaccharides ; Lipopolysaccharides - immunology ; Lipopolysaccharides - pharmacology ; Lung carcinoma ; Lung diseases ; Macrophages ; Macrophages - immunology ; Macrophages - metabolism ; MAP kinase ; Metalloproteinase ; NF-kappa B - metabolism ; NF-κB protein ; Nuclear transport ; Phosphorylation ; Protein Binding ; Protein expression ; Protein kinase ; Proteins ; Respiratory Mucosa - immunology ; Respiratory Mucosa - metabolism ; Respiratory tract ; Rodents ; Signal transduction ; Signal Transduction - drug effects ; STAT3 Transcription Factor - metabolism ; Tissue inhibitor of metalloproteinases ; Transcription Factor AP-1 - metabolism ; Transcription factors ; Tumor necrosis factor-TNF</subject><ispartof>Molecular medicine reports, 2018-04, Vol.17 (4), p.5484-5491</ispartof><rights>Copyright Spandidos Publications UK Ltd. 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2752-a21fefed5b540a4c0c746d5468546e023819542cc604ba9caefd124b0ef2fca83</citedby><cites>FETCH-LOGICAL-c2752-a21fefed5b540a4c0c746d5468546e023819542cc604ba9caefd124b0ef2fca83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29393460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xuefang</creatorcontrib><creatorcontrib>Yin, Sugai</creatorcontrib><creatorcontrib>Chen, Yulong</creatorcontrib><creatorcontrib>Wu, Yaosong</creatorcontrib><creatorcontrib>Zheng, Wanchun</creatorcontrib><creatorcontrib>Dong, Haoran</creatorcontrib><creatorcontrib>Bai, Yan</creatorcontrib><creatorcontrib>Qin, Yanqin</creatorcontrib><creatorcontrib>Li, Jiansheng</creatorcontrib><creatorcontrib>Feng, Suxiang</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><title>LPS‑induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF‑κB, STAT3 or AP‑1 activation</title><title>Molecular medicine reports</title><addtitle>Mol Med Rep</addtitle><description>Lipopolysaccharide (LPS), the major outer surface membrane component of Gram-negative bacteria, is one of the main etiological factors in the pathogenesis of several lung diseases, such as chronic obstructive pulmonary disease. The respiratory epithelium and the macrophages comprise the dynamic interface between the outside environment and the host response to bacterial infection via cytokine secretion. In the present study, the mechanisms of LPS induced‑inflammatory response in human lung cells and macrophages were investigated. The effects of LPS exposure on cytokine production, inflammation‑related transcription factors and intracellular signaling pathway activation were assessed in human lung mucoepidermoid carcinoma H292 cells and human macrophage THP‑1 cells. The results demonstrated that LPS markedly increased the expression of interleukin (IL)‑6, IL‑8, tumor necrosis factor (TNF)‑α, matrix metallopeptidase (MMP)‑9 and tissue inhibitor of metalloproteinases‑1 in H292 cells, while it increased the production of IL‑6, IL‑8 and TNF‑α in differentiated THP‑1 cells. In addition, LPS exposure activated nuclear factor (NF)‑κB and activator protein (AP)‑1 signaling in H292 cells, while it activated NF‑κB and signal transducer and activator of transcription (STAT) 3 signaling in THP‑1 cells. Furthermore, treatment with NF‑κB, AP‑1 or STAT3 inhibitors significantly decreased the LPS‑mediated expression of IL‑8 and TNF‑α in these cells, suggesting that these pathways might serve crucial roles in LPS‑induced cytokine expression. In conclusion, LPS stimulation of H292 and THP‑1 cells induced cytokine expression and NF‑κB, mitogen‑activated protein kinase and Janus kinase/STAT3 pathway activation with subsequent nuclear translocation of NF‑κB, AP‑1 and STAT3, which demonstrated potential of the use of NF‑κB, AP‑1 and STAT3 in therapies for conditions and diseases associated with chronic inflammation.</description><subject>Activator protein 1</subject><subject>Bacterial infections</subject><subject>Biomarkers</subject><subject>Biotechnology</subject><subject>Cell activation</subject><subject>Cell culture</subject><subject>Cell Line</subject><subject>Cell Survival</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Cytokines</subject><subject>Cytokines - genetics</subject><subject>Cytokines - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelium</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gram-negative bacteria</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Inflammation Mediators - metabolism</subject><subject>Interleukin 6</subject><subject>Interleukin 8</subject><subject>Intracellular signalling</subject><subject>Janus kinase</subject><subject>Kinases</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - immunology</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Lung carcinoma</subject><subject>Lung diseases</subject><subject>Macrophages</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>MAP kinase</subject><subject>Metalloproteinase</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>Nuclear transport</subject><subject>Phosphorylation</subject><subject>Protein Binding</subject><subject>Protein expression</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Respiratory Mucosa - immunology</subject><subject>Respiratory Mucosa - metabolism</subject><subject>Respiratory tract</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>Tissue inhibitor of metalloproteinases</subject><subject>Transcription Factor AP-1 - metabolism</subject><subject>Transcription factors</subject><subject>Tumor necrosis factor-TNF</subject><issn>1791-2997</issn><issn>1791-3004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNo9kLtOAzEQRS0E4hEoaZElWjbYXu_DZUC8pAiQCPVq4p0lhn1h7wLp6Kn4HT6Cj-BLcCBQzWh0517dQ8guZ8MwVeKwquxQMJ4O00iKFbLJE8WDkDG5utyFUskG2XLunrE4EpFaJxtChSqUMdskb-Prm6_Xd1PnvcactrYxdVFCVUHX2DnV8655MDVSfGktOmeampqazvoKagrGPsOcYmu6GZYGSqqxLB2FOqcVaNu0M7hDR58M0MtTn_L5cXRAbyajSUgbS0fX_sQp6M48Qeedt8laAaXDneUckNvTk8nxeTC-Ors4Ho0DLZJIBCB4gQXm0TSSDKRmOpFxHsnYE4iRiTDlyrPQOmZyCkoDFjkXcsqwEIWGNByQ_V9f3_axR9dl901vax-ZLUiqNIm9y4AEvypfxDmLRdZaU4GdZ5xlC_SZR__zkC3Qe_3e0rWfVpj_q_9Yh9_h24Qz</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Liu, Xuefang</creator><creator>Yin, Sugai</creator><creator>Chen, Yulong</creator><creator>Wu, Yaosong</creator><creator>Zheng, Wanchun</creator><creator>Dong, Haoran</creator><creator>Bai, Yan</creator><creator>Qin, Yanqin</creator><creator>Li, Jiansheng</creator><creator>Feng, Suxiang</creator><creator>Zhao, Peng</creator><general>Spandidos Publications UK Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180401</creationdate><title>LPS‑induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF‑κB, STAT3 or AP‑1 activation</title><author>Liu, Xuefang ; Yin, Sugai ; Chen, Yulong ; Wu, Yaosong ; Zheng, Wanchun ; Dong, Haoran ; Bai, Yan ; Qin, Yanqin ; Li, Jiansheng ; Feng, Suxiang ; Zhao, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2752-a21fefed5b540a4c0c746d5468546e023819542cc604ba9caefd124b0ef2fca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activator protein 1</topic><topic>Bacterial infections</topic><topic>Biomarkers</topic><topic>Biotechnology</topic><topic>Cell activation</topic><topic>Cell culture</topic><topic>Cell Line</topic><topic>Cell Survival</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Cytokines</topic><topic>Cytokines - genetics</topic><topic>Cytokines - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelium</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gram-negative bacteria</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Inflammation Mediators - metabolism</topic><topic>Interleukin 6</topic><topic>Interleukin 8</topic><topic>Intracellular signalling</topic><topic>Janus kinase</topic><topic>Kinases</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - immunology</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Lung carcinoma</topic><topic>Lung diseases</topic><topic>Macrophages</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>MAP kinase</topic><topic>Metalloproteinase</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>Nuclear transport</topic><topic>Phosphorylation</topic><topic>Protein Binding</topic><topic>Protein expression</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Respiratory Mucosa - immunology</topic><topic>Respiratory Mucosa - metabolism</topic><topic>Respiratory tract</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>Tissue inhibitor of metalloproteinases</topic><topic>Transcription Factor AP-1 - metabolism</topic><topic>Transcription factors</topic><topic>Tumor necrosis factor-TNF</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xuefang</creatorcontrib><creatorcontrib>Yin, Sugai</creatorcontrib><creatorcontrib>Chen, Yulong</creatorcontrib><creatorcontrib>Wu, Yaosong</creatorcontrib><creatorcontrib>Zheng, Wanchun</creatorcontrib><creatorcontrib>Dong, Haoran</creatorcontrib><creatorcontrib>Bai, Yan</creatorcontrib><creatorcontrib>Qin, Yanqin</creatorcontrib><creatorcontrib>Li, Jiansheng</creatorcontrib><creatorcontrib>Feng, Suxiang</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Molecular medicine reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xuefang</au><au>Yin, Sugai</au><au>Chen, Yulong</au><au>Wu, Yaosong</au><au>Zheng, Wanchun</au><au>Dong, Haoran</au><au>Bai, Yan</au><au>Qin, Yanqin</au><au>Li, Jiansheng</au><au>Feng, Suxiang</au><au>Zhao, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LPS‑induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF‑κB, STAT3 or AP‑1 activation</atitle><jtitle>Molecular medicine reports</jtitle><addtitle>Mol Med Rep</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>17</volume><issue>4</issue><spage>5484</spage><epage>5491</epage><pages>5484-5491</pages><issn>1791-2997</issn><eissn>1791-3004</eissn><abstract>Lipopolysaccharide (LPS), the major outer surface membrane component of Gram-negative bacteria, is one of the main etiological factors in the pathogenesis of several lung diseases, such as chronic obstructive pulmonary disease. The respiratory epithelium and the macrophages comprise the dynamic interface between the outside environment and the host response to bacterial infection via cytokine secretion. In the present study, the mechanisms of LPS induced‑inflammatory response in human lung cells and macrophages were investigated. The effects of LPS exposure on cytokine production, inflammation‑related transcription factors and intracellular signaling pathway activation were assessed in human lung mucoepidermoid carcinoma H292 cells and human macrophage THP‑1 cells. The results demonstrated that LPS markedly increased the expression of interleukin (IL)‑6, IL‑8, tumor necrosis factor (TNF)‑α, matrix metallopeptidase (MMP)‑9 and tissue inhibitor of metalloproteinases‑1 in H292 cells, while it increased the production of IL‑6, IL‑8 and TNF‑α in differentiated THP‑1 cells. In addition, LPS exposure activated nuclear factor (NF)‑κB and activator protein (AP)‑1 signaling in H292 cells, while it activated NF‑κB and signal transducer and activator of transcription (STAT) 3 signaling in THP‑1 cells. Furthermore, treatment with NF‑κB, AP‑1 or STAT3 inhibitors significantly decreased the LPS‑mediated expression of IL‑8 and TNF‑α in these cells, suggesting that these pathways might serve crucial roles in LPS‑induced cytokine expression. In conclusion, LPS stimulation of H292 and THP‑1 cells induced cytokine expression and NF‑κB, mitogen‑activated protein kinase and Janus kinase/STAT3 pathway activation with subsequent nuclear translocation of NF‑κB, AP‑1 and STAT3, which demonstrated potential of the use of NF‑κB, AP‑1 and STAT3 in therapies for conditions and diseases associated with chronic inflammation.</abstract><cop>Greece</cop><pub>Spandidos Publications UK Ltd</pub><pmid>29393460</pmid><doi>10.3892/mmr.2018.8542</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1791-2997
ispartof Molecular medicine reports, 2018-04, Vol.17 (4), p.5484-5491
issn 1791-2997
1791-3004
language eng
recordid cdi_proquest_journals_2018987602
source Spandidos Publications Journals; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Activator protein 1
Bacterial infections
Biomarkers
Biotechnology
Cell activation
Cell culture
Cell Line
Cell Survival
Chronic obstructive pulmonary disease
Cytokines
Cytokines - genetics
Cytokines - metabolism
Deoxyribonucleic acid
DNA
Epithelial cells
Epithelial Cells - metabolism
Epithelium
Gene Expression Regulation - drug effects
Gram-negative bacteria
Humans
Inflammation
Inflammation Mediators - metabolism
Interleukin 6
Interleukin 8
Intracellular signalling
Janus kinase
Kinases
Lipopolysaccharides
Lipopolysaccharides - immunology
Lipopolysaccharides - pharmacology
Lung carcinoma
Lung diseases
Macrophages
Macrophages - immunology
Macrophages - metabolism
MAP kinase
Metalloproteinase
NF-kappa B - metabolism
NF-κB protein
Nuclear transport
Phosphorylation
Protein Binding
Protein expression
Protein kinase
Proteins
Respiratory Mucosa - immunology
Respiratory Mucosa - metabolism
Respiratory tract
Rodents
Signal transduction
Signal Transduction - drug effects
STAT3 Transcription Factor - metabolism
Tissue inhibitor of metalloproteinases
Transcription Factor AP-1 - metabolism
Transcription factors
Tumor necrosis factor-TNF
title LPS‑induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF‑κB, STAT3 or AP‑1 activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LPS%E2%80%91induced%20proinflammatory%20cytokine%20expression%20in%20human%20airway%20epithelial%20cells%20and%20macrophages%20via%20NF%E2%80%91%CE%BAB,%20STAT3%20or%20AP%E2%80%911%20activation&rft.jtitle=Molecular%20medicine%20reports&rft.au=Liu,%20Xuefang&rft.date=2018-04-01&rft.volume=17&rft.issue=4&rft.spage=5484&rft.epage=5491&rft.pages=5484-5491&rft.issn=1791-2997&rft.eissn=1791-3004&rft_id=info:doi/10.3892/mmr.2018.8542&rft_dat=%3Cproquest_cross%3E2018987602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2018987602&rft_id=info:pmid/29393460&rfr_iscdi=true