Drag reduction and thrust generation by tangential surface motion in flow past a cylinder
Sensitivity of drag to tangential surface motion is calculated in flow past a circular cylinder in both two- and three-dimensional conditions at Reynolds number Re ≤ 1000 . The magnitude of the sensitivity maximises in the region slightly upstream of the separation points where the contour lines of...
Gespeichert in:
Veröffentlicht in: | Theoretical and computational fluid dynamics 2018-06, Vol.32 (3), p.307-323 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 323 |
---|---|
container_issue | 3 |
container_start_page | 307 |
container_title | Theoretical and computational fluid dynamics |
container_volume | 32 |
creator | Mao, Xuerui Pearson, Emily |
description | Sensitivity of drag to tangential surface motion is calculated in flow past a circular cylinder in both two- and three-dimensional conditions at Reynolds number
Re
≤
1000
. The magnitude of the sensitivity maximises in the region slightly upstream of the separation points where the contour lines of spanwise vorticity are normal to the cylinder surface. A control to reduce drag can be obtained by (negatively) scaling the sensitivity. The high correlation of sensitivities of controlled and uncontrolled flow indicates that the scaled sensitivity is a good approximation of the nonlinear optimal control. It is validated through direct numerical simulations that the linear range of the steady control is much higher than the unsteady control, which synchronises the vortex shedding and induces lock-in effects. The steady control injects angular momentum into the separating boundary layer, stabilises the flow and increases the base pressure significantly. At
Re
=
100
, when the maximum tangential motion reaches 50% of the free-stream velocity, the vortex shedding, boundary-layer separation and recirculation bubbles are eliminated and 32% of the drag is reduced. When the maximum tangential motion reaches 2.5 times of the free-stream velocity, thrust is generated and the power savings ratio, defined as the ratio of the reduced drag power to the control input power, reaches 19.6. The mechanism of drag reduction is attributed to the change of the radial gradient of spanwise vorticity (
∂
r
ζ
^
) and the subsequent accelerated pressure recovery from the uncontrolled separation points to the rear stagnation point. |
doi_str_mv | 10.1007/s00162-017-0452-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2018431520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A537982550</galeid><sourcerecordid>A537982550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-41d71d3e3642866841bc81bcb132355bdfc8a3dc5f253811aa54caa69e8fdf893</originalsourceid><addsrcrecordid>eNp1kEtLAzEYRYMoWB8_wF3A9dQ8p5llqU8ouNGFq_BNHnXKNFOTGWT-vWlHcCUhBG7u-RIOQjeUzCkhi7tECC1ZQeiiIEKyYjxBMyo4KxiT5BTNSMVlIapSnKOLlLaEEC5LNUMf9xE2ODo7mL7pAoZgcf8Zh9TjjQsuwjGtR9xDyEHfQIvTED0Yh3fd8bIJ2LfdN95DhgCbsW2CdfEKnXlok7v-PS_R--PD2-q5WL8-vayW68JwKftCULugljteCqbKUglaG5V3TTnLhdp6o4BbIz2TXFEKIIUBKCunvPWq4pfodpq7j93X4FKvt90QQ35SM0KV4FQyklvzqbWB1ukm-K6PYPKybteYLjjf5Hwp-aJSTMoDQCfAxC6l6Lzex2YHcdSU6INyPSnXWbk-KNdjZtjEpNzNuuLfV_6HfgChW4R3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2018431520</pqid></control><display><type>article</type><title>Drag reduction and thrust generation by tangential surface motion in flow past a cylinder</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mao, Xuerui ; Pearson, Emily</creator><creatorcontrib>Mao, Xuerui ; Pearson, Emily</creatorcontrib><description>Sensitivity of drag to tangential surface motion is calculated in flow past a circular cylinder in both two- and three-dimensional conditions at Reynolds number
Re
≤
1000
. The magnitude of the sensitivity maximises in the region slightly upstream of the separation points where the contour lines of spanwise vorticity are normal to the cylinder surface. A control to reduce drag can be obtained by (negatively) scaling the sensitivity. The high correlation of sensitivities of controlled and uncontrolled flow indicates that the scaled sensitivity is a good approximation of the nonlinear optimal control. It is validated through direct numerical simulations that the linear range of the steady control is much higher than the unsteady control, which synchronises the vortex shedding and induces lock-in effects. The steady control injects angular momentum into the separating boundary layer, stabilises the flow and increases the base pressure significantly. At
Re
=
100
, when the maximum tangential motion reaches 50% of the free-stream velocity, the vortex shedding, boundary-layer separation and recirculation bubbles are eliminated and 32% of the drag is reduced. When the maximum tangential motion reaches 2.5 times of the free-stream velocity, thrust is generated and the power savings ratio, defined as the ratio of the reduced drag power to the control input power, reaches 19.6. The mechanism of drag reduction is attributed to the change of the radial gradient of spanwise vorticity (
∂
r
ζ
^
) and the subsequent accelerated pressure recovery from the uncontrolled separation points to the rear stagnation point.</description><identifier>ISSN: 0935-4964</identifier><identifier>EISSN: 1432-2250</identifier><identifier>DOI: 10.1007/s00162-017-0452-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Angular momentum ; Approximation ; Base pressure ; Boundary layer ; Boundary layer stability ; Boundary layers ; Circular cylinders ; Classical and Continuum Physics ; Computational fluid dynamics ; Computational Science and Engineering ; Computer simulation ; Control ; Cylinders ; Drag ; Drag (Fluid dynamics) ; Drag reduction ; Engineering ; Engineering Fluid Dynamics ; Flow (Dynamics) ; Fluid flow ; Momentum ; Movement ; Nonlinear control ; Optimal control ; Original Article ; Pressure recovery ; Reynolds number ; Rivers ; Scaling ; Sensitivity ; Separation ; Stagnation point ; Surface motion ; Thrust ; Velocity ; Vortex shedding ; Vorticity</subject><ispartof>Theoretical and computational fluid dynamics, 2018-06, Vol.32 (3), p.307-323</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Theoretical and Computational Fluid Dynamics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-41d71d3e3642866841bc81bcb132355bdfc8a3dc5f253811aa54caa69e8fdf893</citedby><cites>FETCH-LOGICAL-c355t-41d71d3e3642866841bc81bcb132355bdfc8a3dc5f253811aa54caa69e8fdf893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00162-017-0452-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00162-017-0452-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mao, Xuerui</creatorcontrib><creatorcontrib>Pearson, Emily</creatorcontrib><title>Drag reduction and thrust generation by tangential surface motion in flow past a cylinder</title><title>Theoretical and computational fluid dynamics</title><addtitle>Theor. Comput. Fluid Dyn</addtitle><description>Sensitivity of drag to tangential surface motion is calculated in flow past a circular cylinder in both two- and three-dimensional conditions at Reynolds number
Re
≤
1000
. The magnitude of the sensitivity maximises in the region slightly upstream of the separation points where the contour lines of spanwise vorticity are normal to the cylinder surface. A control to reduce drag can be obtained by (negatively) scaling the sensitivity. The high correlation of sensitivities of controlled and uncontrolled flow indicates that the scaled sensitivity is a good approximation of the nonlinear optimal control. It is validated through direct numerical simulations that the linear range of the steady control is much higher than the unsteady control, which synchronises the vortex shedding and induces lock-in effects. The steady control injects angular momentum into the separating boundary layer, stabilises the flow and increases the base pressure significantly. At
Re
=
100
, when the maximum tangential motion reaches 50% of the free-stream velocity, the vortex shedding, boundary-layer separation and recirculation bubbles are eliminated and 32% of the drag is reduced. When the maximum tangential motion reaches 2.5 times of the free-stream velocity, thrust is generated and the power savings ratio, defined as the ratio of the reduced drag power to the control input power, reaches 19.6. The mechanism of drag reduction is attributed to the change of the radial gradient of spanwise vorticity (
∂
r
ζ
^
) and the subsequent accelerated pressure recovery from the uncontrolled separation points to the rear stagnation point.</description><subject>Angular momentum</subject><subject>Approximation</subject><subject>Base pressure</subject><subject>Boundary layer</subject><subject>Boundary layer stability</subject><subject>Boundary layers</subject><subject>Circular cylinders</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Computational Science and Engineering</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Cylinders</subject><subject>Drag</subject><subject>Drag (Fluid dynamics)</subject><subject>Drag reduction</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Flow (Dynamics)</subject><subject>Fluid flow</subject><subject>Momentum</subject><subject>Movement</subject><subject>Nonlinear control</subject><subject>Optimal control</subject><subject>Original Article</subject><subject>Pressure recovery</subject><subject>Reynolds number</subject><subject>Rivers</subject><subject>Scaling</subject><subject>Sensitivity</subject><subject>Separation</subject><subject>Stagnation point</subject><subject>Surface motion</subject><subject>Thrust</subject><subject>Velocity</subject><subject>Vortex shedding</subject><subject>Vorticity</subject><issn>0935-4964</issn><issn>1432-2250</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLAzEYRYMoWB8_wF3A9dQ8p5llqU8ouNGFq_BNHnXKNFOTGWT-vWlHcCUhBG7u-RIOQjeUzCkhi7tECC1ZQeiiIEKyYjxBMyo4KxiT5BTNSMVlIapSnKOLlLaEEC5LNUMf9xE2ODo7mL7pAoZgcf8Zh9TjjQsuwjGtR9xDyEHfQIvTED0Yh3fd8bIJ2LfdN95DhgCbsW2CdfEKnXlok7v-PS_R--PD2-q5WL8-vayW68JwKftCULugljteCqbKUglaG5V3TTnLhdp6o4BbIz2TXFEKIIUBKCunvPWq4pfodpq7j93X4FKvt90QQ35SM0KV4FQyklvzqbWB1ukm-K6PYPKybteYLjjf5Hwp-aJSTMoDQCfAxC6l6Lzex2YHcdSU6INyPSnXWbk-KNdjZtjEpNzNuuLfV_6HfgChW4R3</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Mao, Xuerui</creator><creator>Pearson, Emily</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>20180601</creationdate><title>Drag reduction and thrust generation by tangential surface motion in flow past a cylinder</title><author>Mao, Xuerui ; Pearson, Emily</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-41d71d3e3642866841bc81bcb132355bdfc8a3dc5f253811aa54caa69e8fdf893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Angular momentum</topic><topic>Approximation</topic><topic>Base pressure</topic><topic>Boundary layer</topic><topic>Boundary layer stability</topic><topic>Boundary layers</topic><topic>Circular cylinders</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Computational Science and Engineering</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Cylinders</topic><topic>Drag</topic><topic>Drag (Fluid dynamics)</topic><topic>Drag reduction</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Flow (Dynamics)</topic><topic>Fluid flow</topic><topic>Momentum</topic><topic>Movement</topic><topic>Nonlinear control</topic><topic>Optimal control</topic><topic>Original Article</topic><topic>Pressure recovery</topic><topic>Reynolds number</topic><topic>Rivers</topic><topic>Scaling</topic><topic>Sensitivity</topic><topic>Separation</topic><topic>Stagnation point</topic><topic>Surface motion</topic><topic>Thrust</topic><topic>Velocity</topic><topic>Vortex shedding</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Xuerui</creatorcontrib><creatorcontrib>Pearson, Emily</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Theoretical and computational fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Xuerui</au><au>Pearson, Emily</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drag reduction and thrust generation by tangential surface motion in flow past a cylinder</atitle><jtitle>Theoretical and computational fluid dynamics</jtitle><stitle>Theor. Comput. Fluid Dyn</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>32</volume><issue>3</issue><spage>307</spage><epage>323</epage><pages>307-323</pages><issn>0935-4964</issn><eissn>1432-2250</eissn><abstract>Sensitivity of drag to tangential surface motion is calculated in flow past a circular cylinder in both two- and three-dimensional conditions at Reynolds number
Re
≤
1000
. The magnitude of the sensitivity maximises in the region slightly upstream of the separation points where the contour lines of spanwise vorticity are normal to the cylinder surface. A control to reduce drag can be obtained by (negatively) scaling the sensitivity. The high correlation of sensitivities of controlled and uncontrolled flow indicates that the scaled sensitivity is a good approximation of the nonlinear optimal control. It is validated through direct numerical simulations that the linear range of the steady control is much higher than the unsteady control, which synchronises the vortex shedding and induces lock-in effects. The steady control injects angular momentum into the separating boundary layer, stabilises the flow and increases the base pressure significantly. At
Re
=
100
, when the maximum tangential motion reaches 50% of the free-stream velocity, the vortex shedding, boundary-layer separation and recirculation bubbles are eliminated and 32% of the drag is reduced. When the maximum tangential motion reaches 2.5 times of the free-stream velocity, thrust is generated and the power savings ratio, defined as the ratio of the reduced drag power to the control input power, reaches 19.6. The mechanism of drag reduction is attributed to the change of the radial gradient of spanwise vorticity (
∂
r
ζ
^
) and the subsequent accelerated pressure recovery from the uncontrolled separation points to the rear stagnation point.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00162-017-0452-y</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-4964 |
ispartof | Theoretical and computational fluid dynamics, 2018-06, Vol.32 (3), p.307-323 |
issn | 0935-4964 1432-2250 |
language | eng |
recordid | cdi_proquest_journals_2018431520 |
source | SpringerLink Journals - AutoHoldings |
subjects | Angular momentum Approximation Base pressure Boundary layer Boundary layer stability Boundary layers Circular cylinders Classical and Continuum Physics Computational fluid dynamics Computational Science and Engineering Computer simulation Control Cylinders Drag Drag (Fluid dynamics) Drag reduction Engineering Engineering Fluid Dynamics Flow (Dynamics) Fluid flow Momentum Movement Nonlinear control Optimal control Original Article Pressure recovery Reynolds number Rivers Scaling Sensitivity Separation Stagnation point Surface motion Thrust Velocity Vortex shedding Vorticity |
title | Drag reduction and thrust generation by tangential surface motion in flow past a cylinder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drag%20reduction%20and%20thrust%20generation%20by%20tangential%20surface%20motion%20in%20flow%20past%20a%20cylinder&rft.jtitle=Theoretical%20and%20computational%20fluid%20dynamics&rft.au=Mao,%20Xuerui&rft.date=2018-06-01&rft.volume=32&rft.issue=3&rft.spage=307&rft.epage=323&rft.pages=307-323&rft.issn=0935-4964&rft.eissn=1432-2250&rft_id=info:doi/10.1007/s00162-017-0452-y&rft_dat=%3Cgale_proqu%3EA537982550%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2018431520&rft_id=info:pmid/&rft_galeid=A537982550&rfr_iscdi=true |