Synthesis of Sub‐2 nm Iron‐Doped NiSe2 Nanowires and Their Surface‐Confined Oxidation for Oxygen Evolution Catalysis

Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition‐metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub‐2 nm), and the realization of their chemical d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2018-04, Vol.57 (15), p.4020-4024
Hauptverfasser: Gu, Chao, Hu, Shaojin, Zheng, Xusheng, Gao, Min‐Rui, Zheng, Ya‐Rong, Shi, Lei, Gao, Qiang, Zheng, Xiao, Chu, Wangsheng, Yao, Hong‐Bin, Zhu, Junfa, Yu, Shu‐Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4024
container_issue 15
container_start_page 4020
container_title Angewandte Chemie International Edition
container_volume 57
creator Gu, Chao
Hu, Shaojin
Zheng, Xusheng
Gao, Min‐Rui
Zheng, Ya‐Rong
Shi, Lei
Gao, Qiang
Zheng, Xiao
Chu, Wangsheng
Yao, Hong‐Bin
Zhu, Junfa
Yu, Shu‐Hong
description Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition‐metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub‐2 nm), and the realization of their chemical doping is even more challenging. Herein we describe a soft‐template mediated colloidal synthesis of Fe‐doped NiSe2 ultrathin nanowires (UNWs) with diameter down to 1.7 nm. The synergistic interplay between oleylamine and 1‐dodecanethiol is crucial to yield these UNWs. The in situ formed amorphous hydroxide layers that is confined to the surface of the ultrathin scaffolds enable efficient oxygen evolution electrocatalysis. The UNWs exhibit a very low overpotential of 268 mV at 10 mA cm−2 in 0.1 m KOH, as well as remarkable long‐term stability, representing one of the most efficient noble‐metal‐free catalysts. Down to the wire: Colloidal Fe‐doped NiSe2 ultrathin nanowires (UNWs) down to 1.7 nm in diameter were synthesized by a binary soft‐template strategy. These UNWs yield surface‐confined electrochemical oxidation, enabling efficient and robust oxygen evolution catalysis owing to their favorable electronic structures and unsaturated local coordination environments.
doi_str_mv 10.1002/anie.201800883
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2017938235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017938235</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2183-f5288265dc881db85ff9bf8b327b1f7cccf7bf8988263bd8b69a751a9a78e1ef3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYhePTfxvNgPl3aPZEUlIXAAz013t4WSpcXurrCJBy7e_Y38EosYLjPzTp75yAvAPUY9jBB5lNaoHkGYI8Q5vQAdHBMcUcboZaifKI0Yj_E1uKmqVeA5R_0O-Jq1tl6qylTQaThrssP-hxz233YNR97ZoJ7dRhVwYmaKwIm0bmu8qqC0BZwvlfFhxmuZq0CmzmpjAzzdmULWxlmonQ-qXSgLh5-ubP6aqaxl2YaTt-BKy7JSd_-5C95fhvP0LRpPX0fpYBwtCOY00nF4lvTjIuccFxmPtU4yzTNKWIY1y_Ncs6CTI0Szgmf9RLIYyxC5wkrTLng47d1499GoqhYr13gbTorgF0soJzQOVHKitqZUrdh4s5a-FRiJo73iaK842ysGk9HwrOgvHu52Ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017938235</pqid></control><display><type>article</type><title>Synthesis of Sub‐2 nm Iron‐Doped NiSe2 Nanowires and Their Surface‐Confined Oxidation for Oxygen Evolution Catalysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gu, Chao ; Hu, Shaojin ; Zheng, Xusheng ; Gao, Min‐Rui ; Zheng, Ya‐Rong ; Shi, Lei ; Gao, Qiang ; Zheng, Xiao ; Chu, Wangsheng ; Yao, Hong‐Bin ; Zhu, Junfa ; Yu, Shu‐Hong</creator><creatorcontrib>Gu, Chao ; Hu, Shaojin ; Zheng, Xusheng ; Gao, Min‐Rui ; Zheng, Ya‐Rong ; Shi, Lei ; Gao, Qiang ; Zheng, Xiao ; Chu, Wangsheng ; Yao, Hong‐Bin ; Zhu, Junfa ; Yu, Shu‐Hong</creatorcontrib><description>Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition‐metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub‐2 nm), and the realization of their chemical doping is even more challenging. Herein we describe a soft‐template mediated colloidal synthesis of Fe‐doped NiSe2 ultrathin nanowires (UNWs) with diameter down to 1.7 nm. The synergistic interplay between oleylamine and 1‐dodecanethiol is crucial to yield these UNWs. The in situ formed amorphous hydroxide layers that is confined to the surface of the ultrathin scaffolds enable efficient oxygen evolution electrocatalysis. The UNWs exhibit a very low overpotential of 268 mV at 10 mA cm−2 in 0.1 m KOH, as well as remarkable long‐term stability, representing one of the most efficient noble‐metal‐free catalysts. Down to the wire: Colloidal Fe‐doped NiSe2 ultrathin nanowires (UNWs) down to 1.7 nm in diameter were synthesized by a binary soft‐template strategy. These UNWs yield surface‐confined electrochemical oxidation, enabling efficient and robust oxygen evolution catalysis owing to their favorable electronic structures and unsaturated local coordination environments.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201800883</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalysts ; Chemical evolution ; colloidal synthesis ; doping ; Electrocatalysts ; Iron ; Metals ; Nanotechnology ; Nanowires ; Oxidation ; Oxygen ; oxygen evolution ; soft template ; Synthesis ; ultrathin nanowires</subject><ispartof>Angewandte Chemie International Edition, 2018-04, Vol.57 (15), p.4020-4024</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7805-803X ; 0000-0003-3732-1011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201800883$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201800883$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gu, Chao</creatorcontrib><creatorcontrib>Hu, Shaojin</creatorcontrib><creatorcontrib>Zheng, Xusheng</creatorcontrib><creatorcontrib>Gao, Min‐Rui</creatorcontrib><creatorcontrib>Zheng, Ya‐Rong</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Zheng, Xiao</creatorcontrib><creatorcontrib>Chu, Wangsheng</creatorcontrib><creatorcontrib>Yao, Hong‐Bin</creatorcontrib><creatorcontrib>Zhu, Junfa</creatorcontrib><creatorcontrib>Yu, Shu‐Hong</creatorcontrib><title>Synthesis of Sub‐2 nm Iron‐Doped NiSe2 Nanowires and Their Surface‐Confined Oxidation for Oxygen Evolution Catalysis</title><title>Angewandte Chemie International Edition</title><description>Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition‐metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub‐2 nm), and the realization of their chemical doping is even more challenging. Herein we describe a soft‐template mediated colloidal synthesis of Fe‐doped NiSe2 ultrathin nanowires (UNWs) with diameter down to 1.7 nm. The synergistic interplay between oleylamine and 1‐dodecanethiol is crucial to yield these UNWs. The in situ formed amorphous hydroxide layers that is confined to the surface of the ultrathin scaffolds enable efficient oxygen evolution electrocatalysis. The UNWs exhibit a very low overpotential of 268 mV at 10 mA cm−2 in 0.1 m KOH, as well as remarkable long‐term stability, representing one of the most efficient noble‐metal‐free catalysts. Down to the wire: Colloidal Fe‐doped NiSe2 ultrathin nanowires (UNWs) down to 1.7 nm in diameter were synthesized by a binary soft‐template strategy. These UNWs yield surface‐confined electrochemical oxidation, enabling efficient and robust oxygen evolution catalysis owing to their favorable electronic structures and unsaturated local coordination environments.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical evolution</subject><subject>colloidal synthesis</subject><subject>doping</subject><subject>Electrocatalysts</subject><subject>Iron</subject><subject>Metals</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>oxygen evolution</subject><subject>soft template</subject><subject>Synthesis</subject><subject>ultrathin nanowires</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhhujiYhePTfxvNgPl3aPZEUlIXAAz013t4WSpcXurrCJBy7e_Y38EosYLjPzTp75yAvAPUY9jBB5lNaoHkGYI8Q5vQAdHBMcUcboZaifKI0Yj_E1uKmqVeA5R_0O-Jq1tl6qylTQaThrssP-hxz233YNR97ZoJ7dRhVwYmaKwIm0bmu8qqC0BZwvlfFhxmuZq0CmzmpjAzzdmULWxlmonQ-qXSgLh5-ubP6aqaxl2YaTt-BKy7JSd_-5C95fhvP0LRpPX0fpYBwtCOY00nF4lvTjIuccFxmPtU4yzTNKWIY1y_Ncs6CTI0Szgmf9RLIYyxC5wkrTLng47d1499GoqhYr13gbTorgF0soJzQOVHKitqZUrdh4s5a-FRiJo73iaK842ysGk9HwrOgvHu52Ew</recordid><startdate>20180403</startdate><enddate>20180403</enddate><creator>Gu, Chao</creator><creator>Hu, Shaojin</creator><creator>Zheng, Xusheng</creator><creator>Gao, Min‐Rui</creator><creator>Zheng, Ya‐Rong</creator><creator>Shi, Lei</creator><creator>Gao, Qiang</creator><creator>Zheng, Xiao</creator><creator>Chu, Wangsheng</creator><creator>Yao, Hong‐Bin</creator><creator>Zhu, Junfa</creator><creator>Yu, Shu‐Hong</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-7805-803X</orcidid><orcidid>https://orcid.org/0000-0003-3732-1011</orcidid></search><sort><creationdate>20180403</creationdate><title>Synthesis of Sub‐2 nm Iron‐Doped NiSe2 Nanowires and Their Surface‐Confined Oxidation for Oxygen Evolution Catalysis</title><author>Gu, Chao ; Hu, Shaojin ; Zheng, Xusheng ; Gao, Min‐Rui ; Zheng, Ya‐Rong ; Shi, Lei ; Gao, Qiang ; Zheng, Xiao ; Chu, Wangsheng ; Yao, Hong‐Bin ; Zhu, Junfa ; Yu, Shu‐Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2183-f5288265dc881db85ff9bf8b327b1f7cccf7bf8988263bd8b69a751a9a78e1ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical evolution</topic><topic>colloidal synthesis</topic><topic>doping</topic><topic>Electrocatalysts</topic><topic>Iron</topic><topic>Metals</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>oxygen evolution</topic><topic>soft template</topic><topic>Synthesis</topic><topic>ultrathin nanowires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Chao</creatorcontrib><creatorcontrib>Hu, Shaojin</creatorcontrib><creatorcontrib>Zheng, Xusheng</creatorcontrib><creatorcontrib>Gao, Min‐Rui</creatorcontrib><creatorcontrib>Zheng, Ya‐Rong</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Zheng, Xiao</creatorcontrib><creatorcontrib>Chu, Wangsheng</creatorcontrib><creatorcontrib>Yao, Hong‐Bin</creatorcontrib><creatorcontrib>Zhu, Junfa</creatorcontrib><creatorcontrib>Yu, Shu‐Hong</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Chao</au><au>Hu, Shaojin</au><au>Zheng, Xusheng</au><au>Gao, Min‐Rui</au><au>Zheng, Ya‐Rong</au><au>Shi, Lei</au><au>Gao, Qiang</au><au>Zheng, Xiao</au><au>Chu, Wangsheng</au><au>Yao, Hong‐Bin</au><au>Zhu, Junfa</au><au>Yu, Shu‐Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Sub‐2 nm Iron‐Doped NiSe2 Nanowires and Their Surface‐Confined Oxidation for Oxygen Evolution Catalysis</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2018-04-03</date><risdate>2018</risdate><volume>57</volume><issue>15</issue><spage>4020</spage><epage>4024</epage><pages>4020-4024</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition‐metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub‐2 nm), and the realization of their chemical doping is even more challenging. Herein we describe a soft‐template mediated colloidal synthesis of Fe‐doped NiSe2 ultrathin nanowires (UNWs) with diameter down to 1.7 nm. The synergistic interplay between oleylamine and 1‐dodecanethiol is crucial to yield these UNWs. The in situ formed amorphous hydroxide layers that is confined to the surface of the ultrathin scaffolds enable efficient oxygen evolution electrocatalysis. The UNWs exhibit a very low overpotential of 268 mV at 10 mA cm−2 in 0.1 m KOH, as well as remarkable long‐term stability, representing one of the most efficient noble‐metal‐free catalysts. Down to the wire: Colloidal Fe‐doped NiSe2 ultrathin nanowires (UNWs) down to 1.7 nm in diameter were synthesized by a binary soft‐template strategy. These UNWs yield surface‐confined electrochemical oxidation, enabling efficient and robust oxygen evolution catalysis owing to their favorable electronic structures and unsaturated local coordination environments.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.201800883</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-7805-803X</orcidid><orcidid>https://orcid.org/0000-0003-3732-1011</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2018-04, Vol.57 (15), p.4020-4024
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_journals_2017938235
source Wiley Online Library Journals Frontfile Complete
subjects Catalysis
Catalysts
Chemical evolution
colloidal synthesis
doping
Electrocatalysts
Iron
Metals
Nanotechnology
Nanowires
Oxidation
Oxygen
oxygen evolution
soft template
Synthesis
ultrathin nanowires
title Synthesis of Sub‐2 nm Iron‐Doped NiSe2 Nanowires and Their Surface‐Confined Oxidation for Oxygen Evolution Catalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Sub%E2%80%902%E2%80%85nm%20Iron%E2%80%90Doped%20NiSe2%20Nanowires%20and%20Their%20Surface%E2%80%90Confined%20Oxidation%20for%20Oxygen%20Evolution%20Catalysis&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Gu,%20Chao&rft.date=2018-04-03&rft.volume=57&rft.issue=15&rft.spage=4020&rft.epage=4024&rft.pages=4020-4024&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201800883&rft_dat=%3Cproquest_wiley%3E2017938235%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017938235&rft_id=info:pmid/&rfr_iscdi=true