Synthesis of Sub‐2 nm Iron‐Doped NiSe2 Nanowires and Their Surface‐Confined Oxidation for Oxygen Evolution Catalysis
Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition‐metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub‐2 nm), and the realization of their chemical d...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2018-04, Vol.57 (15), p.4020-4024 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4024 |
---|---|
container_issue | 15 |
container_start_page | 4020 |
container_title | Angewandte Chemie International Edition |
container_volume | 57 |
creator | Gu, Chao Hu, Shaojin Zheng, Xusheng Gao, Min‐Rui Zheng, Ya‐Rong Shi, Lei Gao, Qiang Zheng, Xiao Chu, Wangsheng Yao, Hong‐Bin Zhu, Junfa Yu, Shu‐Hong |
description | Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition‐metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub‐2 nm), and the realization of their chemical doping is even more challenging. Herein we describe a soft‐template mediated colloidal synthesis of Fe‐doped NiSe2 ultrathin nanowires (UNWs) with diameter down to 1.7 nm. The synergistic interplay between oleylamine and 1‐dodecanethiol is crucial to yield these UNWs. The in situ formed amorphous hydroxide layers that is confined to the surface of the ultrathin scaffolds enable efficient oxygen evolution electrocatalysis. The UNWs exhibit a very low overpotential of 268 mV at 10 mA cm−2 in 0.1 m KOH, as well as remarkable long‐term stability, representing one of the most efficient noble‐metal‐free catalysts.
Down to the wire: Colloidal Fe‐doped NiSe2 ultrathin nanowires (UNWs) down to 1.7 nm in diameter were synthesized by a binary soft‐template strategy. These UNWs yield surface‐confined electrochemical oxidation, enabling efficient and robust oxygen evolution catalysis owing to their favorable electronic structures and unsaturated local coordination environments. |
doi_str_mv | 10.1002/anie.201800883 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2017938235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017938235</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2183-f5288265dc881db85ff9bf8b327b1f7cccf7bf8988263bd8b69a751a9a78e1ef3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYhePTfxvNgPl3aPZEUlIXAAz013t4WSpcXurrCJBy7e_Y38EosYLjPzTp75yAvAPUY9jBB5lNaoHkGYI8Q5vQAdHBMcUcboZaifKI0Yj_E1uKmqVeA5R_0O-Jq1tl6qylTQaThrssP-hxz233YNR97ZoJ7dRhVwYmaKwIm0bmu8qqC0BZwvlfFhxmuZq0CmzmpjAzzdmULWxlmonQ-qXSgLh5-ubP6aqaxl2YaTt-BKy7JSd_-5C95fhvP0LRpPX0fpYBwtCOY00nF4lvTjIuccFxmPtU4yzTNKWIY1y_Ncs6CTI0Szgmf9RLIYyxC5wkrTLng47d1499GoqhYr13gbTorgF0soJzQOVHKitqZUrdh4s5a-FRiJo73iaK842ysGk9HwrOgvHu52Ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017938235</pqid></control><display><type>article</type><title>Synthesis of Sub‐2 nm Iron‐Doped NiSe2 Nanowires and Their Surface‐Confined Oxidation for Oxygen Evolution Catalysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gu, Chao ; Hu, Shaojin ; Zheng, Xusheng ; Gao, Min‐Rui ; Zheng, Ya‐Rong ; Shi, Lei ; Gao, Qiang ; Zheng, Xiao ; Chu, Wangsheng ; Yao, Hong‐Bin ; Zhu, Junfa ; Yu, Shu‐Hong</creator><creatorcontrib>Gu, Chao ; Hu, Shaojin ; Zheng, Xusheng ; Gao, Min‐Rui ; Zheng, Ya‐Rong ; Shi, Lei ; Gao, Qiang ; Zheng, Xiao ; Chu, Wangsheng ; Yao, Hong‐Bin ; Zhu, Junfa ; Yu, Shu‐Hong</creatorcontrib><description>Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition‐metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub‐2 nm), and the realization of their chemical doping is even more challenging. Herein we describe a soft‐template mediated colloidal synthesis of Fe‐doped NiSe2 ultrathin nanowires (UNWs) with diameter down to 1.7 nm. The synergistic interplay between oleylamine and 1‐dodecanethiol is crucial to yield these UNWs. The in situ formed amorphous hydroxide layers that is confined to the surface of the ultrathin scaffolds enable efficient oxygen evolution electrocatalysis. The UNWs exhibit a very low overpotential of 268 mV at 10 mA cm−2 in 0.1 m KOH, as well as remarkable long‐term stability, representing one of the most efficient noble‐metal‐free catalysts.
Down to the wire: Colloidal Fe‐doped NiSe2 ultrathin nanowires (UNWs) down to 1.7 nm in diameter were synthesized by a binary soft‐template strategy. These UNWs yield surface‐confined electrochemical oxidation, enabling efficient and robust oxygen evolution catalysis owing to their favorable electronic structures and unsaturated local coordination environments.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201800883</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalysts ; Chemical evolution ; colloidal synthesis ; doping ; Electrocatalysts ; Iron ; Metals ; Nanotechnology ; Nanowires ; Oxidation ; Oxygen ; oxygen evolution ; soft template ; Synthesis ; ultrathin nanowires</subject><ispartof>Angewandte Chemie International Edition, 2018-04, Vol.57 (15), p.4020-4024</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7805-803X ; 0000-0003-3732-1011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201800883$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201800883$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gu, Chao</creatorcontrib><creatorcontrib>Hu, Shaojin</creatorcontrib><creatorcontrib>Zheng, Xusheng</creatorcontrib><creatorcontrib>Gao, Min‐Rui</creatorcontrib><creatorcontrib>Zheng, Ya‐Rong</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Zheng, Xiao</creatorcontrib><creatorcontrib>Chu, Wangsheng</creatorcontrib><creatorcontrib>Yao, Hong‐Bin</creatorcontrib><creatorcontrib>Zhu, Junfa</creatorcontrib><creatorcontrib>Yu, Shu‐Hong</creatorcontrib><title>Synthesis of Sub‐2 nm Iron‐Doped NiSe2 Nanowires and Their Surface‐Confined Oxidation for Oxygen Evolution Catalysis</title><title>Angewandte Chemie International Edition</title><description>Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition‐metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub‐2 nm), and the realization of their chemical doping is even more challenging. Herein we describe a soft‐template mediated colloidal synthesis of Fe‐doped NiSe2 ultrathin nanowires (UNWs) with diameter down to 1.7 nm. The synergistic interplay between oleylamine and 1‐dodecanethiol is crucial to yield these UNWs. The in situ formed amorphous hydroxide layers that is confined to the surface of the ultrathin scaffolds enable efficient oxygen evolution electrocatalysis. The UNWs exhibit a very low overpotential of 268 mV at 10 mA cm−2 in 0.1 m KOH, as well as remarkable long‐term stability, representing one of the most efficient noble‐metal‐free catalysts.
Down to the wire: Colloidal Fe‐doped NiSe2 ultrathin nanowires (UNWs) down to 1.7 nm in diameter were synthesized by a binary soft‐template strategy. These UNWs yield surface‐confined electrochemical oxidation, enabling efficient and robust oxygen evolution catalysis owing to their favorable electronic structures and unsaturated local coordination environments.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical evolution</subject><subject>colloidal synthesis</subject><subject>doping</subject><subject>Electrocatalysts</subject><subject>Iron</subject><subject>Metals</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>oxygen evolution</subject><subject>soft template</subject><subject>Synthesis</subject><subject>ultrathin nanowires</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhhujiYhePTfxvNgPl3aPZEUlIXAAz013t4WSpcXurrCJBy7e_Y38EosYLjPzTp75yAvAPUY9jBB5lNaoHkGYI8Q5vQAdHBMcUcboZaifKI0Yj_E1uKmqVeA5R_0O-Jq1tl6qylTQaThrssP-hxz233YNR97ZoJ7dRhVwYmaKwIm0bmu8qqC0BZwvlfFhxmuZq0CmzmpjAzzdmULWxlmonQ-qXSgLh5-ubP6aqaxl2YaTt-BKy7JSd_-5C95fhvP0LRpPX0fpYBwtCOY00nF4lvTjIuccFxmPtU4yzTNKWIY1y_Ncs6CTI0Szgmf9RLIYyxC5wkrTLng47d1499GoqhYr13gbTorgF0soJzQOVHKitqZUrdh4s5a-FRiJo73iaK842ysGk9HwrOgvHu52Ew</recordid><startdate>20180403</startdate><enddate>20180403</enddate><creator>Gu, Chao</creator><creator>Hu, Shaojin</creator><creator>Zheng, Xusheng</creator><creator>Gao, Min‐Rui</creator><creator>Zheng, Ya‐Rong</creator><creator>Shi, Lei</creator><creator>Gao, Qiang</creator><creator>Zheng, Xiao</creator><creator>Chu, Wangsheng</creator><creator>Yao, Hong‐Bin</creator><creator>Zhu, Junfa</creator><creator>Yu, Shu‐Hong</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-7805-803X</orcidid><orcidid>https://orcid.org/0000-0003-3732-1011</orcidid></search><sort><creationdate>20180403</creationdate><title>Synthesis of Sub‐2 nm Iron‐Doped NiSe2 Nanowires and Their Surface‐Confined Oxidation for Oxygen Evolution Catalysis</title><author>Gu, Chao ; Hu, Shaojin ; Zheng, Xusheng ; Gao, Min‐Rui ; Zheng, Ya‐Rong ; Shi, Lei ; Gao, Qiang ; Zheng, Xiao ; Chu, Wangsheng ; Yao, Hong‐Bin ; Zhu, Junfa ; Yu, Shu‐Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2183-f5288265dc881db85ff9bf8b327b1f7cccf7bf8988263bd8b69a751a9a78e1ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical evolution</topic><topic>colloidal synthesis</topic><topic>doping</topic><topic>Electrocatalysts</topic><topic>Iron</topic><topic>Metals</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>oxygen evolution</topic><topic>soft template</topic><topic>Synthesis</topic><topic>ultrathin nanowires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Chao</creatorcontrib><creatorcontrib>Hu, Shaojin</creatorcontrib><creatorcontrib>Zheng, Xusheng</creatorcontrib><creatorcontrib>Gao, Min‐Rui</creatorcontrib><creatorcontrib>Zheng, Ya‐Rong</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Zheng, Xiao</creatorcontrib><creatorcontrib>Chu, Wangsheng</creatorcontrib><creatorcontrib>Yao, Hong‐Bin</creatorcontrib><creatorcontrib>Zhu, Junfa</creatorcontrib><creatorcontrib>Yu, Shu‐Hong</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Chao</au><au>Hu, Shaojin</au><au>Zheng, Xusheng</au><au>Gao, Min‐Rui</au><au>Zheng, Ya‐Rong</au><au>Shi, Lei</au><au>Gao, Qiang</au><au>Zheng, Xiao</au><au>Chu, Wangsheng</au><au>Yao, Hong‐Bin</au><au>Zhu, Junfa</au><au>Yu, Shu‐Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Sub‐2 nm Iron‐Doped NiSe2 Nanowires and Their Surface‐Confined Oxidation for Oxygen Evolution Catalysis</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2018-04-03</date><risdate>2018</risdate><volume>57</volume><issue>15</issue><spage>4020</spage><epage>4024</epage><pages>4020-4024</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition‐metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub‐2 nm), and the realization of their chemical doping is even more challenging. Herein we describe a soft‐template mediated colloidal synthesis of Fe‐doped NiSe2 ultrathin nanowires (UNWs) with diameter down to 1.7 nm. The synergistic interplay between oleylamine and 1‐dodecanethiol is crucial to yield these UNWs. The in situ formed amorphous hydroxide layers that is confined to the surface of the ultrathin scaffolds enable efficient oxygen evolution electrocatalysis. The UNWs exhibit a very low overpotential of 268 mV at 10 mA cm−2 in 0.1 m KOH, as well as remarkable long‐term stability, representing one of the most efficient noble‐metal‐free catalysts.
Down to the wire: Colloidal Fe‐doped NiSe2 ultrathin nanowires (UNWs) down to 1.7 nm in diameter were synthesized by a binary soft‐template strategy. These UNWs yield surface‐confined electrochemical oxidation, enabling efficient and robust oxygen evolution catalysis owing to their favorable electronic structures and unsaturated local coordination environments.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.201800883</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-7805-803X</orcidid><orcidid>https://orcid.org/0000-0003-3732-1011</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2018-04, Vol.57 (15), p.4020-4024 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_journals_2017938235 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Catalysis Catalysts Chemical evolution colloidal synthesis doping Electrocatalysts Iron Metals Nanotechnology Nanowires Oxidation Oxygen oxygen evolution soft template Synthesis ultrathin nanowires |
title | Synthesis of Sub‐2 nm Iron‐Doped NiSe2 Nanowires and Their Surface‐Confined Oxidation for Oxygen Evolution Catalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Sub%E2%80%902%E2%80%85nm%20Iron%E2%80%90Doped%20NiSe2%20Nanowires%20and%20Their%20Surface%E2%80%90Confined%20Oxidation%20for%20Oxygen%20Evolution%20Catalysis&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Gu,%20Chao&rft.date=2018-04-03&rft.volume=57&rft.issue=15&rft.spage=4020&rft.epage=4024&rft.pages=4020-4024&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201800883&rft_dat=%3Cproquest_wiley%3E2017938235%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017938235&rft_id=info:pmid/&rfr_iscdi=true |