Deployment Strategy for Car-Sharing Depots by Clustering Urban Traffic Big Data Based on Affinity Propagation

Car sharing is a type of car rental service, by which consumers rent cars for short periods of time, often charged by hours. The analysis of urban traffic big data is full of importance and significance to determine locations of depots for car-sharing system. Taxi OD (Origin-Destination) is a typica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific programming 2018-01, Vol.2018 (2018), p.1-9
Hauptverfasser: Liu, Zhihan, Zhu, Xiaolu, Jia, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 2018
container_start_page 1
container_title Scientific programming
container_volume 2018
creator Liu, Zhihan
Zhu, Xiaolu
Jia, Yi
description Car sharing is a type of car rental service, by which consumers rent cars for short periods of time, often charged by hours. The analysis of urban traffic big data is full of importance and significance to determine locations of depots for car-sharing system. Taxi OD (Origin-Destination) is a typical dataset of urban traffic. The volume of the data is extremely large so that traditional data processing applications do not work well. In this paper, an optimization method to determine the depot locations by clustering taxi OD points with AP (Affinity Propagation) clustering algorithm has been presented. By analyzing the characteristics of AP clustering algorithm, AP clustering has been optimized hierarchically based on administrative region segmentation. Considering sparse similarity matrix of taxi OD points, the input parameters of AP clustering have been adapted. In the case study, we choose the OD pairs information from Beijing’s taxi GPS trajectory data. The number and locations of depots are determined by clustering the OD points based on the optimization AP clustering. We describe experimental results of our approach and compare it with standard K-means method using quantitative and stationarity index. Experiments on the real datasets show that the proposed method for determining car-sharing depots has a superior performance.
doi_str_mv 10.1155/2018/3907513
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2017935786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017935786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-b5b95fcd5ac10ed8113af27b7ae6fd11e2e6e175fae01bd9da198bcf23698e6a3</originalsourceid><addsrcrecordid>eNqF0E1LxDAQBuAiCn7ePEvAo9bNtJs2Obr1EwSFXcFbmbaTtbLb1CSL9N-btYJHTzO8PMzAG0WnwK8AhJgkHOQkVTwXkO5EByBzEStQb7th50LGKplO96ND5z54kMD5QbS-oX5lhjV1ns29RU_LgWljWYE2nr-jbbslC8Z4x6qBFauN8_QTvtoKO7awqHVbs1kbGHpkM3TUMNOx65B3rR_YizU9LtG3pjuO9jSuHJ38zqPo9e52UTzET8_3j8X1U1ynGfdxJSoldN0IrIFTIwFS1Ele5UiZbgAooYwgFxqJQ9WoBkHJqtZJmilJGaZH0fl4t7fmc0POlx9mY7vwsgwd5SoVucyCuhxVbY1zlnTZ23aNdiiBl9tCt1iWv4UGfjHy97Zr8Kv9T5-NmoIhjX86gWkmk_Qb8paAOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017935786</pqid></control><display><type>article</type><title>Deployment Strategy for Car-Sharing Depots by Clustering Urban Traffic Big Data Based on Affinity Propagation</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Zhihan ; Zhu, Xiaolu ; Jia, Yi</creator><contributor>Kim, Youngjae ; Youngjae Kim</contributor><creatorcontrib>Liu, Zhihan ; Zhu, Xiaolu ; Jia, Yi ; Kim, Youngjae ; Youngjae Kim</creatorcontrib><description>Car sharing is a type of car rental service, by which consumers rent cars for short periods of time, often charged by hours. The analysis of urban traffic big data is full of importance and significance to determine locations of depots for car-sharing system. Taxi OD (Origin-Destination) is a typical dataset of urban traffic. The volume of the data is extremely large so that traditional data processing applications do not work well. In this paper, an optimization method to determine the depot locations by clustering taxi OD points with AP (Affinity Propagation) clustering algorithm has been presented. By analyzing the characteristics of AP clustering algorithm, AP clustering has been optimized hierarchically based on administrative region segmentation. Considering sparse similarity matrix of taxi OD points, the input parameters of AP clustering have been adapted. In the case study, we choose the OD pairs information from Beijing’s taxi GPS trajectory data. The number and locations of depots are determined by clustering the OD points based on the optimization AP clustering. We describe experimental results of our approach and compare it with standard K-means method using quantitative and stationarity index. Experiments on the real datasets show that the proposed method for determining car-sharing depots has a superior performance.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2018/3907513</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Affinity ; Big Data ; Car sharing ; Case studies ; Clustering ; Data management ; Data processing ; Optimization ; Propagation</subject><ispartof>Scientific programming, 2018-01, Vol.2018 (2018), p.1-9</ispartof><rights>Copyright © 2018 Zhihan Liu et al.</rights><rights>Copyright © 2018 Zhihan Liu et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-b5b95fcd5ac10ed8113af27b7ae6fd11e2e6e175fae01bd9da198bcf23698e6a3</citedby><cites>FETCH-LOGICAL-c360t-b5b95fcd5ac10ed8113af27b7ae6fd11e2e6e175fae01bd9da198bcf23698e6a3</cites><orcidid>0000-0003-4399-0326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Kim, Youngjae</contributor><contributor>Youngjae Kim</contributor><creatorcontrib>Liu, Zhihan</creatorcontrib><creatorcontrib>Zhu, Xiaolu</creatorcontrib><creatorcontrib>Jia, Yi</creatorcontrib><title>Deployment Strategy for Car-Sharing Depots by Clustering Urban Traffic Big Data Based on Affinity Propagation</title><title>Scientific programming</title><description>Car sharing is a type of car rental service, by which consumers rent cars for short periods of time, often charged by hours. The analysis of urban traffic big data is full of importance and significance to determine locations of depots for car-sharing system. Taxi OD (Origin-Destination) is a typical dataset of urban traffic. The volume of the data is extremely large so that traditional data processing applications do not work well. In this paper, an optimization method to determine the depot locations by clustering taxi OD points with AP (Affinity Propagation) clustering algorithm has been presented. By analyzing the characteristics of AP clustering algorithm, AP clustering has been optimized hierarchically based on administrative region segmentation. Considering sparse similarity matrix of taxi OD points, the input parameters of AP clustering have been adapted. In the case study, we choose the OD pairs information from Beijing’s taxi GPS trajectory data. The number and locations of depots are determined by clustering the OD points based on the optimization AP clustering. We describe experimental results of our approach and compare it with standard K-means method using quantitative and stationarity index. Experiments on the real datasets show that the proposed method for determining car-sharing depots has a superior performance.</description><subject>Affinity</subject><subject>Big Data</subject><subject>Car sharing</subject><subject>Case studies</subject><subject>Clustering</subject><subject>Data management</subject><subject>Data processing</subject><subject>Optimization</subject><subject>Propagation</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqF0E1LxDAQBuAiCn7ePEvAo9bNtJs2Obr1EwSFXcFbmbaTtbLb1CSL9N-btYJHTzO8PMzAG0WnwK8AhJgkHOQkVTwXkO5EByBzEStQb7th50LGKplO96ND5z54kMD5QbS-oX5lhjV1ns29RU_LgWljWYE2nr-jbbslC8Z4x6qBFauN8_QTvtoKO7awqHVbs1kbGHpkM3TUMNOx65B3rR_YizU9LtG3pjuO9jSuHJ38zqPo9e52UTzET8_3j8X1U1ynGfdxJSoldN0IrIFTIwFS1Ele5UiZbgAooYwgFxqJQ9WoBkHJqtZJmilJGaZH0fl4t7fmc0POlx9mY7vwsgwd5SoVucyCuhxVbY1zlnTZ23aNdiiBl9tCt1iWv4UGfjHy97Zr8Kv9T5-NmoIhjX86gWkmk_Qb8paAOQ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Liu, Zhihan</creator><creator>Zhu, Xiaolu</creator><creator>Jia, Yi</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4399-0326</orcidid></search><sort><creationdate>20180101</creationdate><title>Deployment Strategy for Car-Sharing Depots by Clustering Urban Traffic Big Data Based on Affinity Propagation</title><author>Liu, Zhihan ; Zhu, Xiaolu ; Jia, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-b5b95fcd5ac10ed8113af27b7ae6fd11e2e6e175fae01bd9da198bcf23698e6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Affinity</topic><topic>Big Data</topic><topic>Car sharing</topic><topic>Case studies</topic><topic>Clustering</topic><topic>Data management</topic><topic>Data processing</topic><topic>Optimization</topic><topic>Propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhihan</creatorcontrib><creatorcontrib>Zhu, Xiaolu</creatorcontrib><creatorcontrib>Jia, Yi</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhihan</au><au>Zhu, Xiaolu</au><au>Jia, Yi</au><au>Kim, Youngjae</au><au>Youngjae Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deployment Strategy for Car-Sharing Depots by Clustering Urban Traffic Big Data Based on Affinity Propagation</atitle><jtitle>Scientific programming</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>Car sharing is a type of car rental service, by which consumers rent cars for short periods of time, often charged by hours. The analysis of urban traffic big data is full of importance and significance to determine locations of depots for car-sharing system. Taxi OD (Origin-Destination) is a typical dataset of urban traffic. The volume of the data is extremely large so that traditional data processing applications do not work well. In this paper, an optimization method to determine the depot locations by clustering taxi OD points with AP (Affinity Propagation) clustering algorithm has been presented. By analyzing the characteristics of AP clustering algorithm, AP clustering has been optimized hierarchically based on administrative region segmentation. Considering sparse similarity matrix of taxi OD points, the input parameters of AP clustering have been adapted. In the case study, we choose the OD pairs information from Beijing’s taxi GPS trajectory data. The number and locations of depots are determined by clustering the OD points based on the optimization AP clustering. We describe experimental results of our approach and compare it with standard K-means method using quantitative and stationarity index. Experiments on the real datasets show that the proposed method for determining car-sharing depots has a superior performance.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/3907513</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4399-0326</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-9244
ispartof Scientific programming, 2018-01, Vol.2018 (2018), p.1-9
issn 1058-9244
1875-919X
language eng
recordid cdi_proquest_journals_2017935786
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Affinity
Big Data
Car sharing
Case studies
Clustering
Data management
Data processing
Optimization
Propagation
title Deployment Strategy for Car-Sharing Depots by Clustering Urban Traffic Big Data Based on Affinity Propagation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deployment%20Strategy%20for%20Car-Sharing%20Depots%20by%20Clustering%20Urban%20Traffic%20Big%20Data%20Based%20on%20Affinity%20Propagation&rft.jtitle=Scientific%20programming&rft.au=Liu,%20Zhihan&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2018/3907513&rft_dat=%3Cproquest_cross%3E2017935786%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017935786&rft_id=info:pmid/&rfr_iscdi=true