The versatility of spectrum analysis for forecasting financial time series
The versatility of the one‐dimensional discrete wavelet analysis combined with wavelet and Burg extensions for forecasting financial times series with distinctive properties is illustrated with market data. Any time series of financial assets may be decomposed into simpler signals called approximati...
Gespeichert in:
Veröffentlicht in: | Journal of forecasting 2018-04, Vol.37 (3), p.327-339 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 339 |
---|---|
container_issue | 3 |
container_start_page | 327 |
container_title | Journal of forecasting |
container_volume | 37 |
creator | Rostan, Pierre Rostan, Alexandra |
description | The versatility of the one‐dimensional discrete wavelet analysis combined with wavelet and Burg extensions for forecasting financial times series with distinctive properties is illustrated with market data. Any time series of financial assets may be decomposed into simpler signals called approximations and details in the framework of the one‐dimensional discrete wavelet analysis. The simplified signals are recomposed after extension. The final output is the forecasted time series which is compared to observed data. Results show the pertinence of adding spectrum analysis to the battery of tools used by econometricians and quantitative analysts for the forecast of economic or financial time series. |
doi_str_mv | 10.1002/for.2504 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2017692592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017692592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3264-3dc767eac6d1d996fb8ac664a16f3e34f190be2e39ed849843f124d8441c76e73</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKvgnxDw4mVrvprdHKX4SaEgFbyFNDvRlO1uzWyV_e9NrVcPw7zDbx7zHiGXnE04Y-ImdGkipkwdkRFnxhRc8rdjMmKiLAutjTwlZ4hrxlhZcTEiz8sPoF-Q0PWxif1Au0BxC75Puw11rWsGjEiz6X7AO-xj-05DbF3ro2toHzdAEVIEPCcnwTUIF397TF7v75azx2K-eHia3c4LL4VWhax9qUtwXte8NkaHVZW1Vo7rIEGqwA1bgQBpoK6UqZQMXKgsFc-HUMoxuTr4blP3uQPs7brbpfwqWsF4qY2YGpGp6wPlU4eYINhtihuXBsuZ3TdlcyC7byqjxQH9jg0M_3L2fvHyy_8AyUNqNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017692592</pqid></control><display><type>article</type><title>The versatility of spectrum analysis for forecasting financial time series</title><source>Wiley Online Library</source><source>Business Source Complete (EBSCO)</source><creator>Rostan, Pierre ; Rostan, Alexandra</creator><creatorcontrib>Rostan, Pierre ; Rostan, Alexandra</creatorcontrib><description>The versatility of the one‐dimensional discrete wavelet analysis combined with wavelet and Burg extensions for forecasting financial times series with distinctive properties is illustrated with market data. Any time series of financial assets may be decomposed into simpler signals called approximations and details in the framework of the one‐dimensional discrete wavelet analysis. The simplified signals are recomposed after extension. The final output is the forecasted time series which is compared to observed data. Results show the pertinence of adding spectrum analysis to the battery of tools used by econometricians and quantitative analysts for the forecast of economic or financial time series.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/for.2504</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>econometric modeling ; financial econometrics ; financial time series ; Forecasting ; forecasting and prediction methods ; mathematical and quantitative methods ; Spectrum analysis ; Time series ; Wavelet transforms</subject><ispartof>Journal of forecasting, 2018-04, Vol.37 (3), p.327-339</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3264-3dc767eac6d1d996fb8ac664a16f3e34f190be2e39ed849843f124d8441c76e73</citedby><cites>FETCH-LOGICAL-c3264-3dc767eac6d1d996fb8ac664a16f3e34f190be2e39ed849843f124d8441c76e73</cites><orcidid>0000-0003-1046-0214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffor.2504$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffor.2504$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Rostan, Pierre</creatorcontrib><creatorcontrib>Rostan, Alexandra</creatorcontrib><title>The versatility of spectrum analysis for forecasting financial time series</title><title>Journal of forecasting</title><description>The versatility of the one‐dimensional discrete wavelet analysis combined with wavelet and Burg extensions for forecasting financial times series with distinctive properties is illustrated with market data. Any time series of financial assets may be decomposed into simpler signals called approximations and details in the framework of the one‐dimensional discrete wavelet analysis. The simplified signals are recomposed after extension. The final output is the forecasted time series which is compared to observed data. Results show the pertinence of adding spectrum analysis to the battery of tools used by econometricians and quantitative analysts for the forecast of economic or financial time series.</description><subject>econometric modeling</subject><subject>financial econometrics</subject><subject>financial time series</subject><subject>Forecasting</subject><subject>forecasting and prediction methods</subject><subject>mathematical and quantitative methods</subject><subject>Spectrum analysis</subject><subject>Time series</subject><subject>Wavelet transforms</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKvgnxDw4mVrvprdHKX4SaEgFbyFNDvRlO1uzWyV_e9NrVcPw7zDbx7zHiGXnE04Y-ImdGkipkwdkRFnxhRc8rdjMmKiLAutjTwlZ4hrxlhZcTEiz8sPoF-Q0PWxif1Au0BxC75Puw11rWsGjEiz6X7AO-xj-05DbF3ro2toHzdAEVIEPCcnwTUIF397TF7v75azx2K-eHia3c4LL4VWhax9qUtwXte8NkaHVZW1Vo7rIEGqwA1bgQBpoK6UqZQMXKgsFc-HUMoxuTr4blP3uQPs7brbpfwqWsF4qY2YGpGp6wPlU4eYINhtihuXBsuZ3TdlcyC7byqjxQH9jg0M_3L2fvHyy_8AyUNqNg</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Rostan, Pierre</creator><creator>Rostan, Alexandra</creator><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0003-1046-0214</orcidid></search><sort><creationdate>201804</creationdate><title>The versatility of spectrum analysis for forecasting financial time series</title><author>Rostan, Pierre ; Rostan, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3264-3dc767eac6d1d996fb8ac664a16f3e34f190be2e39ed849843f124d8441c76e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>econometric modeling</topic><topic>financial econometrics</topic><topic>financial time series</topic><topic>Forecasting</topic><topic>forecasting and prediction methods</topic><topic>mathematical and quantitative methods</topic><topic>Spectrum analysis</topic><topic>Time series</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rostan, Pierre</creatorcontrib><creatorcontrib>Rostan, Alexandra</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rostan, Pierre</au><au>Rostan, Alexandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The versatility of spectrum analysis for forecasting financial time series</atitle><jtitle>Journal of forecasting</jtitle><date>2018-04</date><risdate>2018</risdate><volume>37</volume><issue>3</issue><spage>327</spage><epage>339</epage><pages>327-339</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><abstract>The versatility of the one‐dimensional discrete wavelet analysis combined with wavelet and Burg extensions for forecasting financial times series with distinctive properties is illustrated with market data. Any time series of financial assets may be decomposed into simpler signals called approximations and details in the framework of the one‐dimensional discrete wavelet analysis. The simplified signals are recomposed after extension. The final output is the forecasted time series which is compared to observed data. Results show the pertinence of adding spectrum analysis to the battery of tools used by econometricians and quantitative analysts for the forecast of economic or financial time series.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/for.2504</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1046-0214</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6693 |
ispartof | Journal of forecasting, 2018-04, Vol.37 (3), p.327-339 |
issn | 0277-6693 1099-131X |
language | eng |
recordid | cdi_proquest_journals_2017692592 |
source | Wiley Online Library; Business Source Complete (EBSCO) |
subjects | econometric modeling financial econometrics financial time series Forecasting forecasting and prediction methods mathematical and quantitative methods Spectrum analysis Time series Wavelet transforms |
title | The versatility of spectrum analysis for forecasting financial time series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20versatility%20of%20spectrum%20analysis%20for%20forecasting%20financial%20time%20series&rft.jtitle=Journal%20of%20forecasting&rft.au=Rostan,%20Pierre&rft.date=2018-04&rft.volume=37&rft.issue=3&rft.spage=327&rft.epage=339&rft.pages=327-339&rft.issn=0277-6693&rft.eissn=1099-131X&rft_id=info:doi/10.1002/for.2504&rft_dat=%3Cproquest_cross%3E2017692592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017692592&rft_id=info:pmid/&rfr_iscdi=true |