The versatility of spectrum analysis for forecasting financial time series

The versatility of the one‐dimensional discrete wavelet analysis combined with wavelet and Burg extensions for forecasting financial times series with distinctive properties is illustrated with market data. Any time series of financial assets may be decomposed into simpler signals called approximati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forecasting 2018-04, Vol.37 (3), p.327-339
Hauptverfasser: Rostan, Pierre, Rostan, Alexandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue 3
container_start_page 327
container_title Journal of forecasting
container_volume 37
creator Rostan, Pierre
Rostan, Alexandra
description The versatility of the one‐dimensional discrete wavelet analysis combined with wavelet and Burg extensions for forecasting financial times series with distinctive properties is illustrated with market data. Any time series of financial assets may be decomposed into simpler signals called approximations and details in the framework of the one‐dimensional discrete wavelet analysis. The simplified signals are recomposed after extension. The final output is the forecasted time series which is compared to observed data. Results show the pertinence of adding spectrum analysis to the battery of tools used by econometricians and quantitative analysts for the forecast of economic or financial time series.
doi_str_mv 10.1002/for.2504
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2017692592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017692592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3264-3dc767eac6d1d996fb8ac664a16f3e34f190be2e39ed849843f124d8441c76e73</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKvgnxDw4mVrvprdHKX4SaEgFbyFNDvRlO1uzWyV_e9NrVcPw7zDbx7zHiGXnE04Y-ImdGkipkwdkRFnxhRc8rdjMmKiLAutjTwlZ4hrxlhZcTEiz8sPoF-Q0PWxif1Au0BxC75Puw11rWsGjEiz6X7AO-xj-05DbF3ro2toHzdAEVIEPCcnwTUIF397TF7v75azx2K-eHia3c4LL4VWhax9qUtwXte8NkaHVZW1Vo7rIEGqwA1bgQBpoK6UqZQMXKgsFc-HUMoxuTr4blP3uQPs7brbpfwqWsF4qY2YGpGp6wPlU4eYINhtihuXBsuZ3TdlcyC7byqjxQH9jg0M_3L2fvHyy_8AyUNqNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017692592</pqid></control><display><type>article</type><title>The versatility of spectrum analysis for forecasting financial time series</title><source>Wiley Online Library</source><source>Business Source Complete (EBSCO)</source><creator>Rostan, Pierre ; Rostan, Alexandra</creator><creatorcontrib>Rostan, Pierre ; Rostan, Alexandra</creatorcontrib><description>The versatility of the one‐dimensional discrete wavelet analysis combined with wavelet and Burg extensions for forecasting financial times series with distinctive properties is illustrated with market data. Any time series of financial assets may be decomposed into simpler signals called approximations and details in the framework of the one‐dimensional discrete wavelet analysis. The simplified signals are recomposed after extension. The final output is the forecasted time series which is compared to observed data. Results show the pertinence of adding spectrum analysis to the battery of tools used by econometricians and quantitative analysts for the forecast of economic or financial time series.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/for.2504</identifier><language>eng</language><publisher>Chichester: Wiley Periodicals Inc</publisher><subject>econometric modeling ; financial econometrics ; financial time series ; Forecasting ; forecasting and prediction methods ; mathematical and quantitative methods ; Spectrum analysis ; Time series ; Wavelet transforms</subject><ispartof>Journal of forecasting, 2018-04, Vol.37 (3), p.327-339</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3264-3dc767eac6d1d996fb8ac664a16f3e34f190be2e39ed849843f124d8441c76e73</citedby><cites>FETCH-LOGICAL-c3264-3dc767eac6d1d996fb8ac664a16f3e34f190be2e39ed849843f124d8441c76e73</cites><orcidid>0000-0003-1046-0214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffor.2504$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffor.2504$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Rostan, Pierre</creatorcontrib><creatorcontrib>Rostan, Alexandra</creatorcontrib><title>The versatility of spectrum analysis for forecasting financial time series</title><title>Journal of forecasting</title><description>The versatility of the one‐dimensional discrete wavelet analysis combined with wavelet and Burg extensions for forecasting financial times series with distinctive properties is illustrated with market data. Any time series of financial assets may be decomposed into simpler signals called approximations and details in the framework of the one‐dimensional discrete wavelet analysis. The simplified signals are recomposed after extension. The final output is the forecasted time series which is compared to observed data. Results show the pertinence of adding spectrum analysis to the battery of tools used by econometricians and quantitative analysts for the forecast of economic or financial time series.</description><subject>econometric modeling</subject><subject>financial econometrics</subject><subject>financial time series</subject><subject>Forecasting</subject><subject>forecasting and prediction methods</subject><subject>mathematical and quantitative methods</subject><subject>Spectrum analysis</subject><subject>Time series</subject><subject>Wavelet transforms</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKvgnxDw4mVrvprdHKX4SaEgFbyFNDvRlO1uzWyV_e9NrVcPw7zDbx7zHiGXnE04Y-ImdGkipkwdkRFnxhRc8rdjMmKiLAutjTwlZ4hrxlhZcTEiz8sPoF-Q0PWxif1Au0BxC75Puw11rWsGjEiz6X7AO-xj-05DbF3ro2toHzdAEVIEPCcnwTUIF397TF7v75azx2K-eHia3c4LL4VWhax9qUtwXte8NkaHVZW1Vo7rIEGqwA1bgQBpoK6UqZQMXKgsFc-HUMoxuTr4blP3uQPs7brbpfwqWsF4qY2YGpGp6wPlU4eYINhtihuXBsuZ3TdlcyC7byqjxQH9jg0M_3L2fvHyy_8AyUNqNg</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Rostan, Pierre</creator><creator>Rostan, Alexandra</creator><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0003-1046-0214</orcidid></search><sort><creationdate>201804</creationdate><title>The versatility of spectrum analysis for forecasting financial time series</title><author>Rostan, Pierre ; Rostan, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3264-3dc767eac6d1d996fb8ac664a16f3e34f190be2e39ed849843f124d8441c76e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>econometric modeling</topic><topic>financial econometrics</topic><topic>financial time series</topic><topic>Forecasting</topic><topic>forecasting and prediction methods</topic><topic>mathematical and quantitative methods</topic><topic>Spectrum analysis</topic><topic>Time series</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rostan, Pierre</creatorcontrib><creatorcontrib>Rostan, Alexandra</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rostan, Pierre</au><au>Rostan, Alexandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The versatility of spectrum analysis for forecasting financial time series</atitle><jtitle>Journal of forecasting</jtitle><date>2018-04</date><risdate>2018</risdate><volume>37</volume><issue>3</issue><spage>327</spage><epage>339</epage><pages>327-339</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><abstract>The versatility of the one‐dimensional discrete wavelet analysis combined with wavelet and Burg extensions for forecasting financial times series with distinctive properties is illustrated with market data. Any time series of financial assets may be decomposed into simpler signals called approximations and details in the framework of the one‐dimensional discrete wavelet analysis. The simplified signals are recomposed after extension. The final output is the forecasted time series which is compared to observed data. Results show the pertinence of adding spectrum analysis to the battery of tools used by econometricians and quantitative analysts for the forecast of economic or financial time series.</abstract><cop>Chichester</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/for.2504</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1046-0214</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0277-6693
ispartof Journal of forecasting, 2018-04, Vol.37 (3), p.327-339
issn 0277-6693
1099-131X
language eng
recordid cdi_proquest_journals_2017692592
source Wiley Online Library; Business Source Complete (EBSCO)
subjects econometric modeling
financial econometrics
financial time series
Forecasting
forecasting and prediction methods
mathematical and quantitative methods
Spectrum analysis
Time series
Wavelet transforms
title The versatility of spectrum analysis for forecasting financial time series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20versatility%20of%20spectrum%20analysis%20for%20forecasting%20financial%20time%20series&rft.jtitle=Journal%20of%20forecasting&rft.au=Rostan,%20Pierre&rft.date=2018-04&rft.volume=37&rft.issue=3&rft.spage=327&rft.epage=339&rft.pages=327-339&rft.issn=0277-6693&rft.eissn=1099-131X&rft_id=info:doi/10.1002/for.2504&rft_dat=%3Cproquest_cross%3E2017692592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017692592&rft_id=info:pmid/&rfr_iscdi=true