Graphene Quantum‐Dot‐Modified Hexagonal Tubular Carbon Nitride for Visible‐Light Photocatalytic Hydrogen Evolution
Graphene quantum dots were modified on hexagonal tubular carbon nitride to form a composite photocatalyst by freeze‐drying technology. With an optimum loading amount of 0.15 wt % GQDs, the composite photocatalyst exhibits an improved visible‐light photocatalytic performance for hydrogen evolution (1...
Gespeichert in:
Veröffentlicht in: | ChemCatChem 2018-03, Vol.10 (6), p.1330-1335 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1335 |
---|---|
container_issue | 6 |
container_start_page | 1330 |
container_title | ChemCatChem |
container_volume | 10 |
creator | Gao, Yanting Hou, Feng Hu, Shan Wu, Baogang Wang, Ying Zhang, Haiqiu Jiang, Baojiang Fu, Honggang |
description | Graphene quantum dots were modified on hexagonal tubular carbon nitride to form a composite photocatalyst by freeze‐drying technology. With an optimum loading amount of 0.15 wt % GQDs, the composite photocatalyst exhibits an improved visible‐light photocatalytic performance for hydrogen evolution (112.1 μmol h−1) that is about 9 times higher than that of bulk carbon nitride. During the photocatalytic reaction, graphene quantum dots play a photosensitizer role and an electron reservoir, which can extend the visible‐light response of the photocatalyst, decrease its band gap, and improve the separation efficiency of photoinduced electron–hole pairs. The graphene quantum dots can also absorb the long‐wavelength light and then emit the shorter wavelength light based on its upper transfer luminescence properties, which also contribute to the utilization of visible light. This finding demonstrates that the graphene quantum‐dot modification is a promising method to improve visible‐light photocatalytic activities for traditional photocatalysts.
GQD modification: Graphene quantum dots (GQDs) were modified on hexagonal tubular carbon nitride to form a composite photocatalyst by freeze‐drying technology. The hydrogen evolution rate of P‐TCN/GQDs‐0.15 is 112.1 μmol h−1 (λ>420 nm), which is about nine times higher than that of bulk carbon nitride. |
doi_str_mv | 10.1002/cctc.201701823 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2017680475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017680475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3833-3c16eb77e17e44fff7f7aec54c55225f6c052aa2980ff26a63e70a3539ff341a3</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEqWwMltiTrHjOE5GFKBFKn9SYbUcx25dpXGxHWg2HoFn5ElIVVRGlvvd4TtXugeAc4xGGKH4UsogRzHCDOEsJgdggLOURSTL88P9nqFjcOL9EqE0J4wOwGbsxHqhGgWfW9GEdvX9-XVtQz_vbWW0URWcqI2Y20bUcNaWbS0cLIQrbQMfTHCmUlBbB1-NN2Wtem5q5osAnxY2WCmCqLtgJJx0lbNz1cCbd1u3wdjmFBxpUXt19ptD8HJ7Mysm0fRxfFdcTSNJMkIiInGqSsYUZipJtNZMM6EkTSSlcUx1KhGNhYjzDGkdpyIliiFBKMm1JgkWZAgudnfXzr61yge-tK3rv_F86yrNUMJo3xrtWtJZ753SfO3MSriOY8S3dvnWLt_b7YF8B3yYWnX_tHlRzIo_9gc8X4M7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017680475</pqid></control><display><type>article</type><title>Graphene Quantum‐Dot‐Modified Hexagonal Tubular Carbon Nitride for Visible‐Light Photocatalytic Hydrogen Evolution</title><source>Wiley Online Library</source><creator>Gao, Yanting ; Hou, Feng ; Hu, Shan ; Wu, Baogang ; Wang, Ying ; Zhang, Haiqiu ; Jiang, Baojiang ; Fu, Honggang</creator><creatorcontrib>Gao, Yanting ; Hou, Feng ; Hu, Shan ; Wu, Baogang ; Wang, Ying ; Zhang, Haiqiu ; Jiang, Baojiang ; Fu, Honggang</creatorcontrib><description>Graphene quantum dots were modified on hexagonal tubular carbon nitride to form a composite photocatalyst by freeze‐drying technology. With an optimum loading amount of 0.15 wt % GQDs, the composite photocatalyst exhibits an improved visible‐light photocatalytic performance for hydrogen evolution (112.1 μmol h−1) that is about 9 times higher than that of bulk carbon nitride. During the photocatalytic reaction, graphene quantum dots play a photosensitizer role and an electron reservoir, which can extend the visible‐light response of the photocatalyst, decrease its band gap, and improve the separation efficiency of photoinduced electron–hole pairs. The graphene quantum dots can also absorb the long‐wavelength light and then emit the shorter wavelength light based on its upper transfer luminescence properties, which also contribute to the utilization of visible light. This finding demonstrates that the graphene quantum‐dot modification is a promising method to improve visible‐light photocatalytic activities for traditional photocatalysts.
GQD modification: Graphene quantum dots (GQDs) were modified on hexagonal tubular carbon nitride to form a composite photocatalyst by freeze‐drying technology. The hydrogen evolution rate of P‐TCN/GQDs‐0.15 is 112.1 μmol h−1 (λ>420 nm), which is about nine times higher than that of bulk carbon nitride.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.201701823</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Carbon nitride ; Graphene ; graphene quantum dots ; Hydrogen evolution ; Light ; Luminescence ; Optical properties ; Photocatalysis ; Photocatalysts ; Quantum dots</subject><ispartof>ChemCatChem, 2018-03, Vol.10 (6), p.1330-1335</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3833-3c16eb77e17e44fff7f7aec54c55225f6c052aa2980ff26a63e70a3539ff341a3</citedby><cites>FETCH-LOGICAL-c3833-3c16eb77e17e44fff7f7aec54c55225f6c052aa2980ff26a63e70a3539ff341a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.201701823$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.201701823$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gao, Yanting</creatorcontrib><creatorcontrib>Hou, Feng</creatorcontrib><creatorcontrib>Hu, Shan</creatorcontrib><creatorcontrib>Wu, Baogang</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Zhang, Haiqiu</creatorcontrib><creatorcontrib>Jiang, Baojiang</creatorcontrib><creatorcontrib>Fu, Honggang</creatorcontrib><title>Graphene Quantum‐Dot‐Modified Hexagonal Tubular Carbon Nitride for Visible‐Light Photocatalytic Hydrogen Evolution</title><title>ChemCatChem</title><description>Graphene quantum dots were modified on hexagonal tubular carbon nitride to form a composite photocatalyst by freeze‐drying technology. With an optimum loading amount of 0.15 wt % GQDs, the composite photocatalyst exhibits an improved visible‐light photocatalytic performance for hydrogen evolution (112.1 μmol h−1) that is about 9 times higher than that of bulk carbon nitride. During the photocatalytic reaction, graphene quantum dots play a photosensitizer role and an electron reservoir, which can extend the visible‐light response of the photocatalyst, decrease its band gap, and improve the separation efficiency of photoinduced electron–hole pairs. The graphene quantum dots can also absorb the long‐wavelength light and then emit the shorter wavelength light based on its upper transfer luminescence properties, which also contribute to the utilization of visible light. This finding demonstrates that the graphene quantum‐dot modification is a promising method to improve visible‐light photocatalytic activities for traditional photocatalysts.
GQD modification: Graphene quantum dots (GQDs) were modified on hexagonal tubular carbon nitride to form a composite photocatalyst by freeze‐drying technology. The hydrogen evolution rate of P‐TCN/GQDs‐0.15 is 112.1 μmol h−1 (λ>420 nm), which is about nine times higher than that of bulk carbon nitride.</description><subject>Carbon</subject><subject>Carbon nitride</subject><subject>Graphene</subject><subject>graphene quantum dots</subject><subject>Hydrogen evolution</subject><subject>Light</subject><subject>Luminescence</subject><subject>Optical properties</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Quantum dots</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EEqWwMltiTrHjOE5GFKBFKn9SYbUcx25dpXGxHWg2HoFn5ElIVVRGlvvd4TtXugeAc4xGGKH4UsogRzHCDOEsJgdggLOURSTL88P9nqFjcOL9EqE0J4wOwGbsxHqhGgWfW9GEdvX9-XVtQz_vbWW0URWcqI2Y20bUcNaWbS0cLIQrbQMfTHCmUlBbB1-NN2Wtem5q5osAnxY2WCmCqLtgJJx0lbNz1cCbd1u3wdjmFBxpUXt19ptD8HJ7Mysm0fRxfFdcTSNJMkIiInGqSsYUZipJtNZMM6EkTSSlcUx1KhGNhYjzDGkdpyIliiFBKMm1JgkWZAgudnfXzr61yge-tK3rv_F86yrNUMJo3xrtWtJZ753SfO3MSriOY8S3dvnWLt_b7YF8B3yYWnX_tHlRzIo_9gc8X4M7</recordid><startdate>20180321</startdate><enddate>20180321</enddate><creator>Gao, Yanting</creator><creator>Hou, Feng</creator><creator>Hu, Shan</creator><creator>Wu, Baogang</creator><creator>Wang, Ying</creator><creator>Zhang, Haiqiu</creator><creator>Jiang, Baojiang</creator><creator>Fu, Honggang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180321</creationdate><title>Graphene Quantum‐Dot‐Modified Hexagonal Tubular Carbon Nitride for Visible‐Light Photocatalytic Hydrogen Evolution</title><author>Gao, Yanting ; Hou, Feng ; Hu, Shan ; Wu, Baogang ; Wang, Ying ; Zhang, Haiqiu ; Jiang, Baojiang ; Fu, Honggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3833-3c16eb77e17e44fff7f7aec54c55225f6c052aa2980ff26a63e70a3539ff341a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon</topic><topic>Carbon nitride</topic><topic>Graphene</topic><topic>graphene quantum dots</topic><topic>Hydrogen evolution</topic><topic>Light</topic><topic>Luminescence</topic><topic>Optical properties</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Quantum dots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yanting</creatorcontrib><creatorcontrib>Hou, Feng</creatorcontrib><creatorcontrib>Hu, Shan</creatorcontrib><creatorcontrib>Wu, Baogang</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Zhang, Haiqiu</creatorcontrib><creatorcontrib>Jiang, Baojiang</creatorcontrib><creatorcontrib>Fu, Honggang</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yanting</au><au>Hou, Feng</au><au>Hu, Shan</au><au>Wu, Baogang</au><au>Wang, Ying</au><au>Zhang, Haiqiu</au><au>Jiang, Baojiang</au><au>Fu, Honggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Quantum‐Dot‐Modified Hexagonal Tubular Carbon Nitride for Visible‐Light Photocatalytic Hydrogen Evolution</atitle><jtitle>ChemCatChem</jtitle><date>2018-03-21</date><risdate>2018</risdate><volume>10</volume><issue>6</issue><spage>1330</spage><epage>1335</epage><pages>1330-1335</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Graphene quantum dots were modified on hexagonal tubular carbon nitride to form a composite photocatalyst by freeze‐drying technology. With an optimum loading amount of 0.15 wt % GQDs, the composite photocatalyst exhibits an improved visible‐light photocatalytic performance for hydrogen evolution (112.1 μmol h−1) that is about 9 times higher than that of bulk carbon nitride. During the photocatalytic reaction, graphene quantum dots play a photosensitizer role and an electron reservoir, which can extend the visible‐light response of the photocatalyst, decrease its band gap, and improve the separation efficiency of photoinduced electron–hole pairs. The graphene quantum dots can also absorb the long‐wavelength light and then emit the shorter wavelength light based on its upper transfer luminescence properties, which also contribute to the utilization of visible light. This finding demonstrates that the graphene quantum‐dot modification is a promising method to improve visible‐light photocatalytic activities for traditional photocatalysts.
GQD modification: Graphene quantum dots (GQDs) were modified on hexagonal tubular carbon nitride to form a composite photocatalyst by freeze‐drying technology. The hydrogen evolution rate of P‐TCN/GQDs‐0.15 is 112.1 μmol h−1 (λ>420 nm), which is about nine times higher than that of bulk carbon nitride.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.201701823</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-3880 |
ispartof | ChemCatChem, 2018-03, Vol.10 (6), p.1330-1335 |
issn | 1867-3880 1867-3899 |
language | eng |
recordid | cdi_proquest_journals_2017680475 |
source | Wiley Online Library |
subjects | Carbon Carbon nitride Graphene graphene quantum dots Hydrogen evolution Light Luminescence Optical properties Photocatalysis Photocatalysts Quantum dots |
title | Graphene Quantum‐Dot‐Modified Hexagonal Tubular Carbon Nitride for Visible‐Light Photocatalytic Hydrogen Evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Quantum%E2%80%90Dot%E2%80%90Modified%20Hexagonal%20Tubular%20Carbon%20Nitride%20for%20Visible%E2%80%90Light%20Photocatalytic%20Hydrogen%20Evolution&rft.jtitle=ChemCatChem&rft.au=Gao,%20Yanting&rft.date=2018-03-21&rft.volume=10&rft.issue=6&rft.spage=1330&rft.epage=1335&rft.pages=1330-1335&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.201701823&rft_dat=%3Cproquest_cross%3E2017680475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017680475&rft_id=info:pmid/&rfr_iscdi=true |