Graphene Quantum‐Dot‐Modified Hexagonal Tubular Carbon Nitride for Visible‐Light Photocatalytic Hydrogen Evolution

Graphene quantum dots were modified on hexagonal tubular carbon nitride to form a composite photocatalyst by freeze‐drying technology. With an optimum loading amount of 0.15 wt % GQDs, the composite photocatalyst exhibits an improved visible‐light photocatalytic performance for hydrogen evolution (1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2018-03, Vol.10 (6), p.1330-1335
Hauptverfasser: Gao, Yanting, Hou, Feng, Hu, Shan, Wu, Baogang, Wang, Ying, Zhang, Haiqiu, Jiang, Baojiang, Fu, Honggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1335
container_issue 6
container_start_page 1330
container_title ChemCatChem
container_volume 10
creator Gao, Yanting
Hou, Feng
Hu, Shan
Wu, Baogang
Wang, Ying
Zhang, Haiqiu
Jiang, Baojiang
Fu, Honggang
description Graphene quantum dots were modified on hexagonal tubular carbon nitride to form a composite photocatalyst by freeze‐drying technology. With an optimum loading amount of 0.15 wt % GQDs, the composite photocatalyst exhibits an improved visible‐light photocatalytic performance for hydrogen evolution (112.1 μmol h−1) that is about 9 times higher than that of bulk carbon nitride. During the photocatalytic reaction, graphene quantum dots play a photosensitizer role and an electron reservoir, which can extend the visible‐light response of the photocatalyst, decrease its band gap, and improve the separation efficiency of photoinduced electron–hole pairs. The graphene quantum dots can also absorb the long‐wavelength light and then emit the shorter wavelength light based on its upper transfer luminescence properties, which also contribute to the utilization of visible light. This finding demonstrates that the graphene quantum‐dot modification is a promising method to improve visible‐light photocatalytic activities for traditional photocatalysts. GQD modification: Graphene quantum dots (GQDs) were modified on hexagonal tubular carbon nitride to form a composite photocatalyst by freeze‐drying technology. The hydrogen evolution rate of P‐TCN/GQDs‐0.15 is 112.1 μmol h−1 (λ>420 nm), which is about nine times higher than that of bulk carbon nitride.
doi_str_mv 10.1002/cctc.201701823
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2017680475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017680475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3833-3c16eb77e17e44fff7f7aec54c55225f6c052aa2980ff26a63e70a3539ff341a3</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEqWwMltiTrHjOE5GFKBFKn9SYbUcx25dpXGxHWg2HoFn5ElIVVRGlvvd4TtXugeAc4xGGKH4UsogRzHCDOEsJgdggLOURSTL88P9nqFjcOL9EqE0J4wOwGbsxHqhGgWfW9GEdvX9-XVtQz_vbWW0URWcqI2Y20bUcNaWbS0cLIQrbQMfTHCmUlBbB1-NN2Wtem5q5osAnxY2WCmCqLtgJJx0lbNz1cCbd1u3wdjmFBxpUXt19ptD8HJ7Mysm0fRxfFdcTSNJMkIiInGqSsYUZipJtNZMM6EkTSSlcUx1KhGNhYjzDGkdpyIliiFBKMm1JgkWZAgudnfXzr61yge-tK3rv_F86yrNUMJo3xrtWtJZ753SfO3MSriOY8S3dvnWLt_b7YF8B3yYWnX_tHlRzIo_9gc8X4M7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017680475</pqid></control><display><type>article</type><title>Graphene Quantum‐Dot‐Modified Hexagonal Tubular Carbon Nitride for Visible‐Light Photocatalytic Hydrogen Evolution</title><source>Wiley Online Library</source><creator>Gao, Yanting ; Hou, Feng ; Hu, Shan ; Wu, Baogang ; Wang, Ying ; Zhang, Haiqiu ; Jiang, Baojiang ; Fu, Honggang</creator><creatorcontrib>Gao, Yanting ; Hou, Feng ; Hu, Shan ; Wu, Baogang ; Wang, Ying ; Zhang, Haiqiu ; Jiang, Baojiang ; Fu, Honggang</creatorcontrib><description>Graphene quantum dots were modified on hexagonal tubular carbon nitride to form a composite photocatalyst by freeze‐drying technology. With an optimum loading amount of 0.15 wt % GQDs, the composite photocatalyst exhibits an improved visible‐light photocatalytic performance for hydrogen evolution (112.1 μmol h−1) that is about 9 times higher than that of bulk carbon nitride. During the photocatalytic reaction, graphene quantum dots play a photosensitizer role and an electron reservoir, which can extend the visible‐light response of the photocatalyst, decrease its band gap, and improve the separation efficiency of photoinduced electron–hole pairs. The graphene quantum dots can also absorb the long‐wavelength light and then emit the shorter wavelength light based on its upper transfer luminescence properties, which also contribute to the utilization of visible light. This finding demonstrates that the graphene quantum‐dot modification is a promising method to improve visible‐light photocatalytic activities for traditional photocatalysts. GQD modification: Graphene quantum dots (GQDs) were modified on hexagonal tubular carbon nitride to form a composite photocatalyst by freeze‐drying technology. The hydrogen evolution rate of P‐TCN/GQDs‐0.15 is 112.1 μmol h−1 (λ&gt;420 nm), which is about nine times higher than that of bulk carbon nitride.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.201701823</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Carbon nitride ; Graphene ; graphene quantum dots ; Hydrogen evolution ; Light ; Luminescence ; Optical properties ; Photocatalysis ; Photocatalysts ; Quantum dots</subject><ispartof>ChemCatChem, 2018-03, Vol.10 (6), p.1330-1335</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3833-3c16eb77e17e44fff7f7aec54c55225f6c052aa2980ff26a63e70a3539ff341a3</citedby><cites>FETCH-LOGICAL-c3833-3c16eb77e17e44fff7f7aec54c55225f6c052aa2980ff26a63e70a3539ff341a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.201701823$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.201701823$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gao, Yanting</creatorcontrib><creatorcontrib>Hou, Feng</creatorcontrib><creatorcontrib>Hu, Shan</creatorcontrib><creatorcontrib>Wu, Baogang</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Zhang, Haiqiu</creatorcontrib><creatorcontrib>Jiang, Baojiang</creatorcontrib><creatorcontrib>Fu, Honggang</creatorcontrib><title>Graphene Quantum‐Dot‐Modified Hexagonal Tubular Carbon Nitride for Visible‐Light Photocatalytic Hydrogen Evolution</title><title>ChemCatChem</title><description>Graphene quantum dots were modified on hexagonal tubular carbon nitride to form a composite photocatalyst by freeze‐drying technology. With an optimum loading amount of 0.15 wt % GQDs, the composite photocatalyst exhibits an improved visible‐light photocatalytic performance for hydrogen evolution (112.1 μmol h−1) that is about 9 times higher than that of bulk carbon nitride. During the photocatalytic reaction, graphene quantum dots play a photosensitizer role and an electron reservoir, which can extend the visible‐light response of the photocatalyst, decrease its band gap, and improve the separation efficiency of photoinduced electron–hole pairs. The graphene quantum dots can also absorb the long‐wavelength light and then emit the shorter wavelength light based on its upper transfer luminescence properties, which also contribute to the utilization of visible light. This finding demonstrates that the graphene quantum‐dot modification is a promising method to improve visible‐light photocatalytic activities for traditional photocatalysts. GQD modification: Graphene quantum dots (GQDs) were modified on hexagonal tubular carbon nitride to form a composite photocatalyst by freeze‐drying technology. The hydrogen evolution rate of P‐TCN/GQDs‐0.15 is 112.1 μmol h−1 (λ&gt;420 nm), which is about nine times higher than that of bulk carbon nitride.</description><subject>Carbon</subject><subject>Carbon nitride</subject><subject>Graphene</subject><subject>graphene quantum dots</subject><subject>Hydrogen evolution</subject><subject>Light</subject><subject>Luminescence</subject><subject>Optical properties</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Quantum dots</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EEqWwMltiTrHjOE5GFKBFKn9SYbUcx25dpXGxHWg2HoFn5ElIVVRGlvvd4TtXugeAc4xGGKH4UsogRzHCDOEsJgdggLOURSTL88P9nqFjcOL9EqE0J4wOwGbsxHqhGgWfW9GEdvX9-XVtQz_vbWW0URWcqI2Y20bUcNaWbS0cLIQrbQMfTHCmUlBbB1-NN2Wtem5q5osAnxY2WCmCqLtgJJx0lbNz1cCbd1u3wdjmFBxpUXt19ptD8HJ7Mysm0fRxfFdcTSNJMkIiInGqSsYUZipJtNZMM6EkTSSlcUx1KhGNhYjzDGkdpyIliiFBKMm1JgkWZAgudnfXzr61yge-tK3rv_F86yrNUMJo3xrtWtJZ753SfO3MSriOY8S3dvnWLt_b7YF8B3yYWnX_tHlRzIo_9gc8X4M7</recordid><startdate>20180321</startdate><enddate>20180321</enddate><creator>Gao, Yanting</creator><creator>Hou, Feng</creator><creator>Hu, Shan</creator><creator>Wu, Baogang</creator><creator>Wang, Ying</creator><creator>Zhang, Haiqiu</creator><creator>Jiang, Baojiang</creator><creator>Fu, Honggang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180321</creationdate><title>Graphene Quantum‐Dot‐Modified Hexagonal Tubular Carbon Nitride for Visible‐Light Photocatalytic Hydrogen Evolution</title><author>Gao, Yanting ; Hou, Feng ; Hu, Shan ; Wu, Baogang ; Wang, Ying ; Zhang, Haiqiu ; Jiang, Baojiang ; Fu, Honggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3833-3c16eb77e17e44fff7f7aec54c55225f6c052aa2980ff26a63e70a3539ff341a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon</topic><topic>Carbon nitride</topic><topic>Graphene</topic><topic>graphene quantum dots</topic><topic>Hydrogen evolution</topic><topic>Light</topic><topic>Luminescence</topic><topic>Optical properties</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Quantum dots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yanting</creatorcontrib><creatorcontrib>Hou, Feng</creatorcontrib><creatorcontrib>Hu, Shan</creatorcontrib><creatorcontrib>Wu, Baogang</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Zhang, Haiqiu</creatorcontrib><creatorcontrib>Jiang, Baojiang</creatorcontrib><creatorcontrib>Fu, Honggang</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yanting</au><au>Hou, Feng</au><au>Hu, Shan</au><au>Wu, Baogang</au><au>Wang, Ying</au><au>Zhang, Haiqiu</au><au>Jiang, Baojiang</au><au>Fu, Honggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Quantum‐Dot‐Modified Hexagonal Tubular Carbon Nitride for Visible‐Light Photocatalytic Hydrogen Evolution</atitle><jtitle>ChemCatChem</jtitle><date>2018-03-21</date><risdate>2018</risdate><volume>10</volume><issue>6</issue><spage>1330</spage><epage>1335</epage><pages>1330-1335</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Graphene quantum dots were modified on hexagonal tubular carbon nitride to form a composite photocatalyst by freeze‐drying technology. With an optimum loading amount of 0.15 wt % GQDs, the composite photocatalyst exhibits an improved visible‐light photocatalytic performance for hydrogen evolution (112.1 μmol h−1) that is about 9 times higher than that of bulk carbon nitride. During the photocatalytic reaction, graphene quantum dots play a photosensitizer role and an electron reservoir, which can extend the visible‐light response of the photocatalyst, decrease its band gap, and improve the separation efficiency of photoinduced electron–hole pairs. The graphene quantum dots can also absorb the long‐wavelength light and then emit the shorter wavelength light based on its upper transfer luminescence properties, which also contribute to the utilization of visible light. This finding demonstrates that the graphene quantum‐dot modification is a promising method to improve visible‐light photocatalytic activities for traditional photocatalysts. GQD modification: Graphene quantum dots (GQDs) were modified on hexagonal tubular carbon nitride to form a composite photocatalyst by freeze‐drying technology. The hydrogen evolution rate of P‐TCN/GQDs‐0.15 is 112.1 μmol h−1 (λ&gt;420 nm), which is about nine times higher than that of bulk carbon nitride.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.201701823</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2018-03, Vol.10 (6), p.1330-1335
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_2017680475
source Wiley Online Library
subjects Carbon
Carbon nitride
Graphene
graphene quantum dots
Hydrogen evolution
Light
Luminescence
Optical properties
Photocatalysis
Photocatalysts
Quantum dots
title Graphene Quantum‐Dot‐Modified Hexagonal Tubular Carbon Nitride for Visible‐Light Photocatalytic Hydrogen Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Quantum%E2%80%90Dot%E2%80%90Modified%20Hexagonal%20Tubular%20Carbon%20Nitride%20for%20Visible%E2%80%90Light%20Photocatalytic%20Hydrogen%20Evolution&rft.jtitle=ChemCatChem&rft.au=Gao,%20Yanting&rft.date=2018-03-21&rft.volume=10&rft.issue=6&rft.spage=1330&rft.epage=1335&rft.pages=1330-1335&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.201701823&rft_dat=%3Cproquest_cross%3E2017680475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017680475&rft_id=info:pmid/&rfr_iscdi=true