Cyclotomic construction of strong external difference families in finite fields

Strong external difference families (SEDFs) and their generalizations GSEDFs and BGSEDFs in a finite abelian group G are combinatorial designs introduced by Paterson and Stinson (Discret Math 339: 2891–2906, 2016 ) and have applications in communication theory to construct optimal strong algebraic m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2018-05, Vol.86 (5), p.1149-1159
Hauptverfasser: Wen, Jiejing, Yang, Minghui, Fu, Fangwei, Feng, Keqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1159
container_issue 5
container_start_page 1149
container_title Designs, codes, and cryptography
container_volume 86
creator Wen, Jiejing
Yang, Minghui
Fu, Fangwei
Feng, Keqin
description Strong external difference families (SEDFs) and their generalizations GSEDFs and BGSEDFs in a finite abelian group G are combinatorial designs introduced by Paterson and Stinson (Discret Math 339: 2891–2906, 2016 ) and have applications in communication theory to construct optimal strong algebraic manipulation detection codes. In this paper we firstly present some general constructions of these combinatorial designs by using difference sets and partial difference sets in G . Then, as applications of the general constructions, we construct series of SEDF, GSEDF and BGSEDF in finite fields by using cyclotomic classes. Particularly, we present an ( n , m , k , λ ) = ( 243 , 11 , 22 , 20 ) -SEDF in ( F q , + ) ( q = 3 5 = 243 ) by using the cyclotomic classes of order 11 in F q which answers an open problem raised in Paterson and Stinson ( 2016 ).
doi_str_mv 10.1007/s10623-017-0384-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2017640357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017640357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-1dc9c133a50404e56ca0dac27e29ed63334484188d52957d401d44d617d5481e3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc3QmH_txlOIXFHrRc1iS2ZKyTTTZgvvv3VLBk6dhhvcZZh7GbhHuEaB-KAiVVAKwFqAaLaYztkBTK1GbpjpnC2ilEQhSXrKrUnYAgArkgm1WkxvSmPbBcZdiGfPBjSFFnno-NyluOX2PlGM3cB_6njJFR7zv9mEIVHiIvA8xjPMo0ODLNbvou6HQzW9dso_np_fVq1hvXt5Wj2vhVCNHgd61DpXqDGjQZCrXge-crEm25CullNaNxqbxRram9hrQa-0rrL3RDZJasrvT3s-cvg5URrtLh-OVxcpZQqVBzd8vGZ5SLqdSMvX2M4d9lyeLYI_e7MmbnRF79GanmZEnpszZuKX8t_l_6Af3zHBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017640357</pqid></control><display><type>article</type><title>Cyclotomic construction of strong external difference families in finite fields</title><source>SpringerLink Journals</source><creator>Wen, Jiejing ; Yang, Minghui ; Fu, Fangwei ; Feng, Keqin</creator><creatorcontrib>Wen, Jiejing ; Yang, Minghui ; Fu, Fangwei ; Feng, Keqin</creatorcontrib><description>Strong external difference families (SEDFs) and their generalizations GSEDFs and BGSEDFs in a finite abelian group G are combinatorial designs introduced by Paterson and Stinson (Discret Math 339: 2891–2906, 2016 ) and have applications in communication theory to construct optimal strong algebraic manipulation detection codes. In this paper we firstly present some general constructions of these combinatorial designs by using difference sets and partial difference sets in G . Then, as applications of the general constructions, we construct series of SEDF, GSEDF and BGSEDF in finite fields by using cyclotomic classes. Particularly, we present an ( n , m , k , λ ) = ( 243 , 11 , 22 , 20 ) -SEDF in ( F q , + ) ( q = 3 5 = 243 ) by using the cyclotomic classes of order 11 in F q which answers an open problem raised in Paterson and Stinson ( 2016 ).</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-017-0384-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Circuits ; Codes ; Coding and Information Theory ; Combinatorial analysis ; Communication theory ; Computer Science ; Cryptology ; Data Structures and Information Theory ; Discrete Mathematics in Computer Science ; Information and Communication</subject><ispartof>Designs, codes, and cryptography, 2018-05, Vol.86 (5), p.1149-1159</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-1dc9c133a50404e56ca0dac27e29ed63334484188d52957d401d44d617d5481e3</citedby><cites>FETCH-LOGICAL-c382t-1dc9c133a50404e56ca0dac27e29ed63334484188d52957d401d44d617d5481e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10623-017-0384-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10623-017-0384-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wen, Jiejing</creatorcontrib><creatorcontrib>Yang, Minghui</creatorcontrib><creatorcontrib>Fu, Fangwei</creatorcontrib><creatorcontrib>Feng, Keqin</creatorcontrib><title>Cyclotomic construction of strong external difference families in finite fields</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>Strong external difference families (SEDFs) and their generalizations GSEDFs and BGSEDFs in a finite abelian group G are combinatorial designs introduced by Paterson and Stinson (Discret Math 339: 2891–2906, 2016 ) and have applications in communication theory to construct optimal strong algebraic manipulation detection codes. In this paper we firstly present some general constructions of these combinatorial designs by using difference sets and partial difference sets in G . Then, as applications of the general constructions, we construct series of SEDF, GSEDF and BGSEDF in finite fields by using cyclotomic classes. Particularly, we present an ( n , m , k , λ ) = ( 243 , 11 , 22 , 20 ) -SEDF in ( F q , + ) ( q = 3 5 = 243 ) by using the cyclotomic classes of order 11 in F q which answers an open problem raised in Paterson and Stinson ( 2016 ).</description><subject>Circuits</subject><subject>Codes</subject><subject>Coding and Information Theory</subject><subject>Combinatorial analysis</subject><subject>Communication theory</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Data Structures and Information Theory</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Information and Communication</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc3QmH_txlOIXFHrRc1iS2ZKyTTTZgvvv3VLBk6dhhvcZZh7GbhHuEaB-KAiVVAKwFqAaLaYztkBTK1GbpjpnC2ilEQhSXrKrUnYAgArkgm1WkxvSmPbBcZdiGfPBjSFFnno-NyluOX2PlGM3cB_6njJFR7zv9mEIVHiIvA8xjPMo0ODLNbvou6HQzW9dso_np_fVq1hvXt5Wj2vhVCNHgd61DpXqDGjQZCrXge-crEm25CullNaNxqbxRram9hrQa-0rrL3RDZJasrvT3s-cvg5URrtLh-OVxcpZQqVBzd8vGZ5SLqdSMvX2M4d9lyeLYI_e7MmbnRF79GanmZEnpszZuKX8t_l_6Af3zHBk</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Wen, Jiejing</creator><creator>Yang, Minghui</creator><creator>Fu, Fangwei</creator><creator>Feng, Keqin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180501</creationdate><title>Cyclotomic construction of strong external difference families in finite fields</title><author>Wen, Jiejing ; Yang, Minghui ; Fu, Fangwei ; Feng, Keqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-1dc9c133a50404e56ca0dac27e29ed63334484188d52957d401d44d617d5481e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Circuits</topic><topic>Codes</topic><topic>Coding and Information Theory</topic><topic>Combinatorial analysis</topic><topic>Communication theory</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Data Structures and Information Theory</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Information and Communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Jiejing</creatorcontrib><creatorcontrib>Yang, Minghui</creatorcontrib><creatorcontrib>Fu, Fangwei</creatorcontrib><creatorcontrib>Feng, Keqin</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Jiejing</au><au>Yang, Minghui</au><au>Fu, Fangwei</au><au>Feng, Keqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclotomic construction of strong external difference families in finite fields</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>86</volume><issue>5</issue><spage>1149</spage><epage>1159</epage><pages>1149-1159</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>Strong external difference families (SEDFs) and their generalizations GSEDFs and BGSEDFs in a finite abelian group G are combinatorial designs introduced by Paterson and Stinson (Discret Math 339: 2891–2906, 2016 ) and have applications in communication theory to construct optimal strong algebraic manipulation detection codes. In this paper we firstly present some general constructions of these combinatorial designs by using difference sets and partial difference sets in G . Then, as applications of the general constructions, we construct series of SEDF, GSEDF and BGSEDF in finite fields by using cyclotomic classes. Particularly, we present an ( n , m , k , λ ) = ( 243 , 11 , 22 , 20 ) -SEDF in ( F q , + ) ( q = 3 5 = 243 ) by using the cyclotomic classes of order 11 in F q which answers an open problem raised in Paterson and Stinson ( 2016 ).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-017-0384-y</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-1022
ispartof Designs, codes, and cryptography, 2018-05, Vol.86 (5), p.1149-1159
issn 0925-1022
1573-7586
language eng
recordid cdi_proquest_journals_2017640357
source SpringerLink Journals
subjects Circuits
Codes
Coding and Information Theory
Combinatorial analysis
Communication theory
Computer Science
Cryptology
Data Structures and Information Theory
Discrete Mathematics in Computer Science
Information and Communication
title Cyclotomic construction of strong external difference families in finite fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclotomic%20construction%20of%20strong%20external%20difference%20families%20in%20finite%20fields&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Wen,%20Jiejing&rft.date=2018-05-01&rft.volume=86&rft.issue=5&rft.spage=1149&rft.epage=1159&rft.pages=1149-1159&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-017-0384-y&rft_dat=%3Cproquest_cross%3E2017640357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017640357&rft_id=info:pmid/&rfr_iscdi=true