Bayesian curve‐fitting with free‐knot splines

We describe a Bayesian method, for fitting curves to data drawn from an exponential family, that uses splines for which the number and locations of knots are free parameters. The method uses reversible‐jump Markov chain Monte Carlo to change the knot configurations and a locality heuristic to speed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2001-12, Vol.88 (4), p.1055-1071
Hauptverfasser: Dimatteo, Ilaria, Genovese, Christopher R., Kass, Robert E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1071
container_issue 4
container_start_page 1055
container_title Biometrika
container_volume 88
creator Dimatteo, Ilaria
Genovese, Christopher R.
Kass, Robert E.
description We describe a Bayesian method, for fitting curves to data drawn from an exponential family, that uses splines for which the number and locations of knots are free parameters. The method uses reversible‐jump Markov chain Monte Carlo to change the knot configurations and a locality heuristic to speed up mixing. For nonnormal models, we approximate the integrated likelihood ratios needed to compute acceptance probabilities by using the Bayesian information criterion, BIC, under priors that make this approximation accurate. Our technique is based on a marginalised chain on the knot number and locations, but we provide methods for inference about the regression coefficients, and functions of them, in both normal and nonnormal models. Simulation results suggest that the method performs well, and we illustrate the method in two neuroscience applications.
doi_str_mv 10.1093/biomet/88.4.1055
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201698242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2673701</jstor_id><sourcerecordid>2673701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-f800b6513ace95b4a58e8e30e64274f7002b17aa013eb1072b4bfe24be33ec893</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRsFbvHjwEwWPa_cxujlrUWgqCHyBelk2Y1e1HUne3am_-BH-jv8SESD0NM-8zMy8vQscEDwjO2bBw9RLiUKkBbwZC7KAe4RlPmSB4F_UwxlnKOOf76CCEWdtmIushcmE2EJypknLt3-Hn69u6GF31kny4-JpYD-1sXtUxCauFqyAcoj1rFgGO_mofPV5dPozG6fT2-mZ0Pk1LJmRMrcK4yARhpoRcFNwIBQoYhoxTya3EmBZEGoMJg4JgSQteWKC8AMagVDnro9Pu7srXb2sIUc_qta-al5pikuWKctpAuINKX4fgweqVd0vjN5pg3eaiu1y0UprrNpdm5ezvrgmlWVhvqtKF_z1OKGvMNdxJx81CrP1Wp5lksjHdR2knuxDhcysbP9ctIfT46VnLyd3kXo5yLdkvElB9tQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201698242</pqid></control><display><type>article</type><title>Bayesian curve‐fitting with free‐knot splines</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Dimatteo, Ilaria ; Genovese, Christopher R. ; Kass, Robert E.</creator><creatorcontrib>Dimatteo, Ilaria ; Genovese, Christopher R. ; Kass, Robert E.</creatorcontrib><description>We describe a Bayesian method, for fitting curves to data drawn from an exponential family, that uses splines for which the number and locations of knots are free parameters. The method uses reversible‐jump Markov chain Monte Carlo to change the knot configurations and a locality heuristic to speed up mixing. For nonnormal models, we approximate the integrated likelihood ratios needed to compute acceptance probabilities by using the Bayesian information criterion, BIC, under priors that make this approximation accurate. Our technique is based on a marginalised chain on the knot number and locations, but we provide methods for inference about the regression coefficients, and functions of them, in both normal and nonnormal models. Simulation results suggest that the method performs well, and we illustrate the method in two neuroscience applications.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/88.4.1055</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Approximation ; BIC ; Data smoothing ; Exact sciences and technology ; Generalised linear model ; Heuristics ; Knots ; Magnetic resonance ; Magnetic resonance imaging ; Markov analysis ; Markov chains ; Mathematical foundations ; Mathematical functions ; Mathematics ; Modeling ; Monte Carlo simulation ; Nonparametric regression ; Parametric inference ; Parametric models ; Probability and statistics ; Reversible‐jump Markov chain Monte Carlo ; Sciences and techniques of general use ; Signal noise ; Smoothing ; Statistics ; Unit‐information prior</subject><ispartof>Biometrika, 2001-12, Vol.88 (4), p.1055-1071</ispartof><rights>Copyright 2001 Biometrika Trust</rights><rights>2002 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Dec 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-f800b6513ace95b4a58e8e30e64274f7002b17aa013eb1072b4bfe24be33ec893</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2673701$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2673701$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14123002$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dimatteo, Ilaria</creatorcontrib><creatorcontrib>Genovese, Christopher R.</creatorcontrib><creatorcontrib>Kass, Robert E.</creatorcontrib><title>Bayesian curve‐fitting with free‐knot splines</title><title>Biometrika</title><addtitle>Biometrika</addtitle><description>We describe a Bayesian method, for fitting curves to data drawn from an exponential family, that uses splines for which the number and locations of knots are free parameters. The method uses reversible‐jump Markov chain Monte Carlo to change the knot configurations and a locality heuristic to speed up mixing. For nonnormal models, we approximate the integrated likelihood ratios needed to compute acceptance probabilities by using the Bayesian information criterion, BIC, under priors that make this approximation accurate. Our technique is based on a marginalised chain on the knot number and locations, but we provide methods for inference about the regression coefficients, and functions of them, in both normal and nonnormal models. Simulation results suggest that the method performs well, and we illustrate the method in two neuroscience applications.</description><subject>Approximation</subject><subject>BIC</subject><subject>Data smoothing</subject><subject>Exact sciences and technology</subject><subject>Generalised linear model</subject><subject>Heuristics</subject><subject>Knots</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical foundations</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Modeling</subject><subject>Monte Carlo simulation</subject><subject>Nonparametric regression</subject><subject>Parametric inference</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Reversible‐jump Markov chain Monte Carlo</subject><subject>Sciences and techniques of general use</subject><subject>Signal noise</subject><subject>Smoothing</subject><subject>Statistics</subject><subject>Unit‐information prior</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpFkE1Lw0AQhhdRsFbvHjwEwWPa_cxujlrUWgqCHyBelk2Y1e1HUne3am_-BH-jv8SESD0NM-8zMy8vQscEDwjO2bBw9RLiUKkBbwZC7KAe4RlPmSB4F_UwxlnKOOf76CCEWdtmIushcmE2EJypknLt3-Hn69u6GF31kny4-JpYD-1sXtUxCauFqyAcoj1rFgGO_mofPV5dPozG6fT2-mZ0Pk1LJmRMrcK4yARhpoRcFNwIBQoYhoxTya3EmBZEGoMJg4JgSQteWKC8AMagVDnro9Pu7srXb2sIUc_qta-al5pikuWKctpAuINKX4fgweqVd0vjN5pg3eaiu1y0UprrNpdm5ezvrgmlWVhvqtKF_z1OKGvMNdxJx81CrP1Wp5lksjHdR2knuxDhcysbP9ctIfT46VnLyd3kXo5yLdkvElB9tQ</recordid><startdate>20011201</startdate><enddate>20011201</enddate><creator>Dimatteo, Ilaria</creator><creator>Genovese, Christopher R.</creator><creator>Kass, Robert E.</creator><general>Oxford University Press</general><general>Biometrika Trust</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20011201</creationdate><title>Bayesian curve‐fitting with free‐knot splines</title><author>Dimatteo, Ilaria ; Genovese, Christopher R. ; Kass, Robert E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-f800b6513ace95b4a58e8e30e64274f7002b17aa013eb1072b4bfe24be33ec893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Approximation</topic><topic>BIC</topic><topic>Data smoothing</topic><topic>Exact sciences and technology</topic><topic>Generalised linear model</topic><topic>Heuristics</topic><topic>Knots</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical foundations</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Modeling</topic><topic>Monte Carlo simulation</topic><topic>Nonparametric regression</topic><topic>Parametric inference</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Reversible‐jump Markov chain Monte Carlo</topic><topic>Sciences and techniques of general use</topic><topic>Signal noise</topic><topic>Smoothing</topic><topic>Statistics</topic><topic>Unit‐information prior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimatteo, Ilaria</creatorcontrib><creatorcontrib>Genovese, Christopher R.</creatorcontrib><creatorcontrib>Kass, Robert E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimatteo, Ilaria</au><au>Genovese, Christopher R.</au><au>Kass, Robert E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian curve‐fitting with free‐knot splines</atitle><jtitle>Biometrika</jtitle><addtitle>Biometrika</addtitle><date>2001-12-01</date><risdate>2001</risdate><volume>88</volume><issue>4</issue><spage>1055</spage><epage>1071</epage><pages>1055-1071</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>We describe a Bayesian method, for fitting curves to data drawn from an exponential family, that uses splines for which the number and locations of knots are free parameters. The method uses reversible‐jump Markov chain Monte Carlo to change the knot configurations and a locality heuristic to speed up mixing. For nonnormal models, we approximate the integrated likelihood ratios needed to compute acceptance probabilities by using the Bayesian information criterion, BIC, under priors that make this approximation accurate. Our technique is based on a marginalised chain on the knot number and locations, but we provide methods for inference about the regression coefficients, and functions of them, in both normal and nonnormal models. Simulation results suggest that the method performs well, and we illustrate the method in two neuroscience applications.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/88.4.1055</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2001-12, Vol.88 (4), p.1055-1071
issn 0006-3444
1464-3510
language eng
recordid cdi_proquest_journals_201698242
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Approximation
BIC
Data smoothing
Exact sciences and technology
Generalised linear model
Heuristics
Knots
Magnetic resonance
Magnetic resonance imaging
Markov analysis
Markov chains
Mathematical foundations
Mathematical functions
Mathematics
Modeling
Monte Carlo simulation
Nonparametric regression
Parametric inference
Parametric models
Probability and statistics
Reversible‐jump Markov chain Monte Carlo
Sciences and techniques of general use
Signal noise
Smoothing
Statistics
Unit‐information prior
title Bayesian curve‐fitting with free‐knot splines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20curve%E2%80%90fitting%20with%20free%E2%80%90knot%20splines&rft.jtitle=Biometrika&rft.au=Dimatteo,%20Ilaria&rft.date=2001-12-01&rft.volume=88&rft.issue=4&rft.spage=1055&rft.epage=1071&rft.pages=1055-1071&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/88.4.1055&rft_dat=%3Cjstor_proqu%3E2673701%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201698242&rft_id=info:pmid/&rft_jstor_id=2673701&rfr_iscdi=true