Lower Bound Restrictions on Intensities in Data Envelopment Analysis
We propose an extension to the basic DEA models that guarantees that if an intensity is positive then it must be at least as large as a pre-defined lower bound. This requirement adds an integer programming constraint known within Operations Research as a Fixed-Charge (FC) type of constraint. Accordi...
Gespeichert in:
Veröffentlicht in: | Journal of productivity analysis 2001-01, Vol.16 (3), p.241-261 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 261 |
---|---|
container_issue | 3 |
container_start_page | 241 |
container_title | Journal of productivity analysis |
container_volume | 16 |
creator | BOUHNIK, SYLVAIN GOLANY, BOAZ PASSY, URY HACKMAN, STEVEN T. VLATSA, DIMITRA A. |
description | We propose an extension to the basic DEA models that guarantees that if an intensity is positive then it must be at least as large as a pre-defined lower bound. This requirement adds an integer programming constraint known within Operations Research as a Fixed-Charge (FC) type of constraint. Accordingly, we term the new model DEA_FC. The proposed model lies between the DEA models that allow units to be scaled arbitrarily low, and the Free Disposal Hull model that allows no scaling. We analyze 18 datasets from the literature to demonstrate that sufficiently low intensities—those for which the scaled Decision-Making Unit (DMU) has inputs and outputs that lie below the minimum values observed—are pervasive, and that the new model ensures fairer comparisons without sacrificing the required discriminating power. We explain why the "low-intensity" phenomenon exists. In sharp contrast to standard DEA models we demonstrate via examples that an inefficient DMU may play a pivotal role in determining the technology. We also propose a goal programming model that determines how deviations from the lower bounds affect efficiency, which we term the trade-off between the deviation gap and the efficiency gap. |
doi_str_mv | 10.1023/a:1012510605812 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201696879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41770063</jstor_id><sourcerecordid>41770063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-74b763662ff5de3b2509a5ff12ae9b892a3233297ce92f38bbab8415e27545c13</originalsourceid><addsrcrecordid>eNotj0FLwzAYhoMoWKdnT0LwXv2-pEkab3ObOhgIouCtpF0KGVsyk9Sxf29hnt7Lw8vzEHKL8IDA-KN5QkAmECSIGtkZKVAoXkJV4TkpoNaiFJJ9X5KrlDYAoGulCzJfhYON9DkMfk0_bMrRddkFn2jwdOmz9cllZxN1ns5NNnThf-027HfWZzr1ZntMLl2Ti95sk7353wn5ell8zt7K1fvrcjZdlR1XMpeqapXkUrK-F2vLWyZAG9H3yIzVba2Z4YxzplVnNet53bamrSsUlilRiQ75hNyffvcx_AyjbLMJQxwlUsMApZZj0gjdnaBNyiE2--h2Jh6bCpUCkJz_ARRpVbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201696879</pqid></control><display><type>article</type><title>Lower Bound Restrictions on Intensities in Data Envelopment Analysis</title><source>SpringerLink Journals</source><source>Business Source Complete</source><source>Jstor Complete Legacy</source><creator>BOUHNIK, SYLVAIN ; GOLANY, BOAZ ; PASSY, URY ; HACKMAN, STEVEN T. ; VLATSA, DIMITRA A.</creator><creatorcontrib>BOUHNIK, SYLVAIN ; GOLANY, BOAZ ; PASSY, URY ; HACKMAN, STEVEN T. ; VLATSA, DIMITRA A.</creatorcontrib><description>We propose an extension to the basic DEA models that guarantees that if an intensity is positive then it must be at least as large as a pre-defined lower bound. This requirement adds an integer programming constraint known within Operations Research as a Fixed-Charge (FC) type of constraint. Accordingly, we term the new model DEA_FC. The proposed model lies between the DEA models that allow units to be scaled arbitrarily low, and the Free Disposal Hull model that allows no scaling. We analyze 18 datasets from the literature to demonstrate that sufficiently low intensities—those for which the scaled Decision-Making Unit (DMU) has inputs and outputs that lie below the minimum values observed—are pervasive, and that the new model ensures fairer comparisons without sacrificing the required discriminating power. We explain why the "low-intensity" phenomenon exists. In sharp contrast to standard DEA models we demonstrate via examples that an inefficient DMU may play a pivotal role in determining the technology. We also propose a goal programming model that determines how deviations from the lower bounds affect efficiency, which we term the trade-off between the deviation gap and the efficiency gap.</description><identifier>ISSN: 0895-562X</identifier><identifier>EISSN: 1573-0441</identifier><identifier>DOI: 10.1023/a:1012510605812</identifier><language>eng</language><publisher>Norwell: Kluwer Academic Publishers</publisher><subject>Data envelopment analysis ; Datasets ; Decision making ; Efficiency ; Efficiency metrics ; Fixed charges ; Goal programming ; Input output ; Integer programming ; Linear programming ; Management science ; Mathematical models ; Modeling ; Operations research ; Performance evaluation ; Scholarly publishing ; Studies ; Technology ; Warehouses</subject><ispartof>Journal of productivity analysis, 2001-01, Vol.16 (3), p.241-261</ispartof><rights>Copyright Kluwer Academic Publishers Nov 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-74b763662ff5de3b2509a5ff12ae9b892a3233297ce92f38bbab8415e27545c13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41770063$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41770063$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,27905,27906,57998,58231</link.rule.ids></links><search><creatorcontrib>BOUHNIK, SYLVAIN</creatorcontrib><creatorcontrib>GOLANY, BOAZ</creatorcontrib><creatorcontrib>PASSY, URY</creatorcontrib><creatorcontrib>HACKMAN, STEVEN T.</creatorcontrib><creatorcontrib>VLATSA, DIMITRA A.</creatorcontrib><title>Lower Bound Restrictions on Intensities in Data Envelopment Analysis</title><title>Journal of productivity analysis</title><description>We propose an extension to the basic DEA models that guarantees that if an intensity is positive then it must be at least as large as a pre-defined lower bound. This requirement adds an integer programming constraint known within Operations Research as a Fixed-Charge (FC) type of constraint. Accordingly, we term the new model DEA_FC. The proposed model lies between the DEA models that allow units to be scaled arbitrarily low, and the Free Disposal Hull model that allows no scaling. We analyze 18 datasets from the literature to demonstrate that sufficiently low intensities—those for which the scaled Decision-Making Unit (DMU) has inputs and outputs that lie below the minimum values observed—are pervasive, and that the new model ensures fairer comparisons without sacrificing the required discriminating power. We explain why the "low-intensity" phenomenon exists. In sharp contrast to standard DEA models we demonstrate via examples that an inefficient DMU may play a pivotal role in determining the technology. We also propose a goal programming model that determines how deviations from the lower bounds affect efficiency, which we term the trade-off between the deviation gap and the efficiency gap.</description><subject>Data envelopment analysis</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Efficiency</subject><subject>Efficiency metrics</subject><subject>Fixed charges</subject><subject>Goal programming</subject><subject>Input output</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Management science</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Operations research</subject><subject>Performance evaluation</subject><subject>Scholarly publishing</subject><subject>Studies</subject><subject>Technology</subject><subject>Warehouses</subject><issn>0895-562X</issn><issn>1573-0441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotj0FLwzAYhoMoWKdnT0LwXv2-pEkab3ObOhgIouCtpF0KGVsyk9Sxf29hnt7Lw8vzEHKL8IDA-KN5QkAmECSIGtkZKVAoXkJV4TkpoNaiFJJ9X5KrlDYAoGulCzJfhYON9DkMfk0_bMrRddkFn2jwdOmz9cllZxN1ns5NNnThf-027HfWZzr1ZntMLl2Ti95sk7353wn5ell8zt7K1fvrcjZdlR1XMpeqapXkUrK-F2vLWyZAG9H3yIzVba2Z4YxzplVnNet53bamrSsUlilRiQ75hNyffvcx_AyjbLMJQxwlUsMApZZj0gjdnaBNyiE2--h2Jh6bCpUCkJz_ARRpVbo</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>BOUHNIK, SYLVAIN</creator><creator>GOLANY, BOAZ</creator><creator>PASSY, URY</creator><creator>HACKMAN, STEVEN T.</creator><creator>VLATSA, DIMITRA A.</creator><general>Kluwer Academic Publishers</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20010101</creationdate><title>Lower Bound Restrictions on Intensities in Data Envelopment Analysis</title><author>BOUHNIK, SYLVAIN ; GOLANY, BOAZ ; PASSY, URY ; HACKMAN, STEVEN T. ; VLATSA, DIMITRA A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-74b763662ff5de3b2509a5ff12ae9b892a3233297ce92f38bbab8415e27545c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Data envelopment analysis</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Efficiency</topic><topic>Efficiency metrics</topic><topic>Fixed charges</topic><topic>Goal programming</topic><topic>Input output</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Management science</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Operations research</topic><topic>Performance evaluation</topic><topic>Scholarly publishing</topic><topic>Studies</topic><topic>Technology</topic><topic>Warehouses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOUHNIK, SYLVAIN</creatorcontrib><creatorcontrib>GOLANY, BOAZ</creatorcontrib><creatorcontrib>PASSY, URY</creatorcontrib><creatorcontrib>HACKMAN, STEVEN T.</creatorcontrib><creatorcontrib>VLATSA, DIMITRA A.</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of productivity analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOUHNIK, SYLVAIN</au><au>GOLANY, BOAZ</au><au>PASSY, URY</au><au>HACKMAN, STEVEN T.</au><au>VLATSA, DIMITRA A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower Bound Restrictions on Intensities in Data Envelopment Analysis</atitle><jtitle>Journal of productivity analysis</jtitle><date>2001-01-01</date><risdate>2001</risdate><volume>16</volume><issue>3</issue><spage>241</spage><epage>261</epage><pages>241-261</pages><issn>0895-562X</issn><eissn>1573-0441</eissn><abstract>We propose an extension to the basic DEA models that guarantees that if an intensity is positive then it must be at least as large as a pre-defined lower bound. This requirement adds an integer programming constraint known within Operations Research as a Fixed-Charge (FC) type of constraint. Accordingly, we term the new model DEA_FC. The proposed model lies between the DEA models that allow units to be scaled arbitrarily low, and the Free Disposal Hull model that allows no scaling. We analyze 18 datasets from the literature to demonstrate that sufficiently low intensities—those for which the scaled Decision-Making Unit (DMU) has inputs and outputs that lie below the minimum values observed—are pervasive, and that the new model ensures fairer comparisons without sacrificing the required discriminating power. We explain why the "low-intensity" phenomenon exists. In sharp contrast to standard DEA models we demonstrate via examples that an inefficient DMU may play a pivotal role in determining the technology. We also propose a goal programming model that determines how deviations from the lower bounds affect efficiency, which we term the trade-off between the deviation gap and the efficiency gap.</abstract><cop>Norwell</cop><pub>Kluwer Academic Publishers</pub><doi>10.1023/a:1012510605812</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-562X |
ispartof | Journal of productivity analysis, 2001-01, Vol.16 (3), p.241-261 |
issn | 0895-562X 1573-0441 |
language | eng |
recordid | cdi_proquest_journals_201696879 |
source | SpringerLink Journals; Business Source Complete; Jstor Complete Legacy |
subjects | Data envelopment analysis Datasets Decision making Efficiency Efficiency metrics Fixed charges Goal programming Input output Integer programming Linear programming Management science Mathematical models Modeling Operations research Performance evaluation Scholarly publishing Studies Technology Warehouses |
title | Lower Bound Restrictions on Intensities in Data Envelopment Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20Bound%20Restrictions%20on%20Intensities%20in%20Data%20Envelopment%20Analysis&rft.jtitle=Journal%20of%20productivity%20analysis&rft.au=BOUHNIK,%20SYLVAIN&rft.date=2001-01-01&rft.volume=16&rft.issue=3&rft.spage=241&rft.epage=261&rft.pages=241-261&rft.issn=0895-562X&rft.eissn=1573-0441&rft_id=info:doi/10.1023/a:1012510605812&rft_dat=%3Cjstor_proqu%3E41770063%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201696879&rft_id=info:pmid/&rft_jstor_id=41770063&rfr_iscdi=true |