Lower Bound Restrictions on Intensities in Data Envelopment Analysis

We propose an extension to the basic DEA models that guarantees that if an intensity is positive then it must be at least as large as a pre-defined lower bound. This requirement adds an integer programming constraint known within Operations Research as a Fixed-Charge (FC) type of constraint. Accordi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of productivity analysis 2001-01, Vol.16 (3), p.241-261
Hauptverfasser: BOUHNIK, SYLVAIN, GOLANY, BOAZ, PASSY, URY, HACKMAN, STEVEN T., VLATSA, DIMITRA A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue 3
container_start_page 241
container_title Journal of productivity analysis
container_volume 16
creator BOUHNIK, SYLVAIN
GOLANY, BOAZ
PASSY, URY
HACKMAN, STEVEN T.
VLATSA, DIMITRA A.
description We propose an extension to the basic DEA models that guarantees that if an intensity is positive then it must be at least as large as a pre-defined lower bound. This requirement adds an integer programming constraint known within Operations Research as a Fixed-Charge (FC) type of constraint. Accordingly, we term the new model DEA_FC. The proposed model lies between the DEA models that allow units to be scaled arbitrarily low, and the Free Disposal Hull model that allows no scaling. We analyze 18 datasets from the literature to demonstrate that sufficiently low intensities—those for which the scaled Decision-Making Unit (DMU) has inputs and outputs that lie below the minimum values observed—are pervasive, and that the new model ensures fairer comparisons without sacrificing the required discriminating power. We explain why the "low-intensity" phenomenon exists. In sharp contrast to standard DEA models we demonstrate via examples that an inefficient DMU may play a pivotal role in determining the technology. We also propose a goal programming model that determines how deviations from the lower bounds affect efficiency, which we term the trade-off between the deviation gap and the efficiency gap.
doi_str_mv 10.1023/a:1012510605812
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201696879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41770063</jstor_id><sourcerecordid>41770063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-74b763662ff5de3b2509a5ff12ae9b892a3233297ce92f38bbab8415e27545c13</originalsourceid><addsrcrecordid>eNotj0FLwzAYhoMoWKdnT0LwXv2-pEkab3ObOhgIouCtpF0KGVsyk9Sxf29hnt7Lw8vzEHKL8IDA-KN5QkAmECSIGtkZKVAoXkJV4TkpoNaiFJJ9X5KrlDYAoGulCzJfhYON9DkMfk0_bMrRddkFn2jwdOmz9cllZxN1ns5NNnThf-027HfWZzr1ZntMLl2Ti95sk7353wn5ell8zt7K1fvrcjZdlR1XMpeqapXkUrK-F2vLWyZAG9H3yIzVba2Z4YxzplVnNet53bamrSsUlilRiQ75hNyffvcx_AyjbLMJQxwlUsMApZZj0gjdnaBNyiE2--h2Jh6bCpUCkJz_ARRpVbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201696879</pqid></control><display><type>article</type><title>Lower Bound Restrictions on Intensities in Data Envelopment Analysis</title><source>SpringerLink Journals</source><source>Business Source Complete</source><source>Jstor Complete Legacy</source><creator>BOUHNIK, SYLVAIN ; GOLANY, BOAZ ; PASSY, URY ; HACKMAN, STEVEN T. ; VLATSA, DIMITRA A.</creator><creatorcontrib>BOUHNIK, SYLVAIN ; GOLANY, BOAZ ; PASSY, URY ; HACKMAN, STEVEN T. ; VLATSA, DIMITRA A.</creatorcontrib><description>We propose an extension to the basic DEA models that guarantees that if an intensity is positive then it must be at least as large as a pre-defined lower bound. This requirement adds an integer programming constraint known within Operations Research as a Fixed-Charge (FC) type of constraint. Accordingly, we term the new model DEA_FC. The proposed model lies between the DEA models that allow units to be scaled arbitrarily low, and the Free Disposal Hull model that allows no scaling. We analyze 18 datasets from the literature to demonstrate that sufficiently low intensities—those for which the scaled Decision-Making Unit (DMU) has inputs and outputs that lie below the minimum values observed—are pervasive, and that the new model ensures fairer comparisons without sacrificing the required discriminating power. We explain why the "low-intensity" phenomenon exists. In sharp contrast to standard DEA models we demonstrate via examples that an inefficient DMU may play a pivotal role in determining the technology. We also propose a goal programming model that determines how deviations from the lower bounds affect efficiency, which we term the trade-off between the deviation gap and the efficiency gap.</description><identifier>ISSN: 0895-562X</identifier><identifier>EISSN: 1573-0441</identifier><identifier>DOI: 10.1023/a:1012510605812</identifier><language>eng</language><publisher>Norwell: Kluwer Academic Publishers</publisher><subject>Data envelopment analysis ; Datasets ; Decision making ; Efficiency ; Efficiency metrics ; Fixed charges ; Goal programming ; Input output ; Integer programming ; Linear programming ; Management science ; Mathematical models ; Modeling ; Operations research ; Performance evaluation ; Scholarly publishing ; Studies ; Technology ; Warehouses</subject><ispartof>Journal of productivity analysis, 2001-01, Vol.16 (3), p.241-261</ispartof><rights>Copyright Kluwer Academic Publishers Nov 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-74b763662ff5de3b2509a5ff12ae9b892a3233297ce92f38bbab8415e27545c13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41770063$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41770063$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,27905,27906,57998,58231</link.rule.ids></links><search><creatorcontrib>BOUHNIK, SYLVAIN</creatorcontrib><creatorcontrib>GOLANY, BOAZ</creatorcontrib><creatorcontrib>PASSY, URY</creatorcontrib><creatorcontrib>HACKMAN, STEVEN T.</creatorcontrib><creatorcontrib>VLATSA, DIMITRA A.</creatorcontrib><title>Lower Bound Restrictions on Intensities in Data Envelopment Analysis</title><title>Journal of productivity analysis</title><description>We propose an extension to the basic DEA models that guarantees that if an intensity is positive then it must be at least as large as a pre-defined lower bound. This requirement adds an integer programming constraint known within Operations Research as a Fixed-Charge (FC) type of constraint. Accordingly, we term the new model DEA_FC. The proposed model lies between the DEA models that allow units to be scaled arbitrarily low, and the Free Disposal Hull model that allows no scaling. We analyze 18 datasets from the literature to demonstrate that sufficiently low intensities—those for which the scaled Decision-Making Unit (DMU) has inputs and outputs that lie below the minimum values observed—are pervasive, and that the new model ensures fairer comparisons without sacrificing the required discriminating power. We explain why the "low-intensity" phenomenon exists. In sharp contrast to standard DEA models we demonstrate via examples that an inefficient DMU may play a pivotal role in determining the technology. We also propose a goal programming model that determines how deviations from the lower bounds affect efficiency, which we term the trade-off between the deviation gap and the efficiency gap.</description><subject>Data envelopment analysis</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Efficiency</subject><subject>Efficiency metrics</subject><subject>Fixed charges</subject><subject>Goal programming</subject><subject>Input output</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Management science</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Operations research</subject><subject>Performance evaluation</subject><subject>Scholarly publishing</subject><subject>Studies</subject><subject>Technology</subject><subject>Warehouses</subject><issn>0895-562X</issn><issn>1573-0441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotj0FLwzAYhoMoWKdnT0LwXv2-pEkab3ObOhgIouCtpF0KGVsyk9Sxf29hnt7Lw8vzEHKL8IDA-KN5QkAmECSIGtkZKVAoXkJV4TkpoNaiFJJ9X5KrlDYAoGulCzJfhYON9DkMfk0_bMrRddkFn2jwdOmz9cllZxN1ns5NNnThf-027HfWZzr1ZntMLl2Ti95sk7353wn5ell8zt7K1fvrcjZdlR1XMpeqapXkUrK-F2vLWyZAG9H3yIzVba2Z4YxzplVnNet53bamrSsUlilRiQ75hNyffvcx_AyjbLMJQxwlUsMApZZj0gjdnaBNyiE2--h2Jh6bCpUCkJz_ARRpVbo</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>BOUHNIK, SYLVAIN</creator><creator>GOLANY, BOAZ</creator><creator>PASSY, URY</creator><creator>HACKMAN, STEVEN T.</creator><creator>VLATSA, DIMITRA A.</creator><general>Kluwer Academic Publishers</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20010101</creationdate><title>Lower Bound Restrictions on Intensities in Data Envelopment Analysis</title><author>BOUHNIK, SYLVAIN ; GOLANY, BOAZ ; PASSY, URY ; HACKMAN, STEVEN T. ; VLATSA, DIMITRA A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-74b763662ff5de3b2509a5ff12ae9b892a3233297ce92f38bbab8415e27545c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Data envelopment analysis</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Efficiency</topic><topic>Efficiency metrics</topic><topic>Fixed charges</topic><topic>Goal programming</topic><topic>Input output</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Management science</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Operations research</topic><topic>Performance evaluation</topic><topic>Scholarly publishing</topic><topic>Studies</topic><topic>Technology</topic><topic>Warehouses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOUHNIK, SYLVAIN</creatorcontrib><creatorcontrib>GOLANY, BOAZ</creatorcontrib><creatorcontrib>PASSY, URY</creatorcontrib><creatorcontrib>HACKMAN, STEVEN T.</creatorcontrib><creatorcontrib>VLATSA, DIMITRA A.</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of productivity analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOUHNIK, SYLVAIN</au><au>GOLANY, BOAZ</au><au>PASSY, URY</au><au>HACKMAN, STEVEN T.</au><au>VLATSA, DIMITRA A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower Bound Restrictions on Intensities in Data Envelopment Analysis</atitle><jtitle>Journal of productivity analysis</jtitle><date>2001-01-01</date><risdate>2001</risdate><volume>16</volume><issue>3</issue><spage>241</spage><epage>261</epage><pages>241-261</pages><issn>0895-562X</issn><eissn>1573-0441</eissn><abstract>We propose an extension to the basic DEA models that guarantees that if an intensity is positive then it must be at least as large as a pre-defined lower bound. This requirement adds an integer programming constraint known within Operations Research as a Fixed-Charge (FC) type of constraint. Accordingly, we term the new model DEA_FC. The proposed model lies between the DEA models that allow units to be scaled arbitrarily low, and the Free Disposal Hull model that allows no scaling. We analyze 18 datasets from the literature to demonstrate that sufficiently low intensities—those for which the scaled Decision-Making Unit (DMU) has inputs and outputs that lie below the minimum values observed—are pervasive, and that the new model ensures fairer comparisons without sacrificing the required discriminating power. We explain why the "low-intensity" phenomenon exists. In sharp contrast to standard DEA models we demonstrate via examples that an inefficient DMU may play a pivotal role in determining the technology. We also propose a goal programming model that determines how deviations from the lower bounds affect efficiency, which we term the trade-off between the deviation gap and the efficiency gap.</abstract><cop>Norwell</cop><pub>Kluwer Academic Publishers</pub><doi>10.1023/a:1012510605812</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-562X
ispartof Journal of productivity analysis, 2001-01, Vol.16 (3), p.241-261
issn 0895-562X
1573-0441
language eng
recordid cdi_proquest_journals_201696879
source SpringerLink Journals; Business Source Complete; Jstor Complete Legacy
subjects Data envelopment analysis
Datasets
Decision making
Efficiency
Efficiency metrics
Fixed charges
Goal programming
Input output
Integer programming
Linear programming
Management science
Mathematical models
Modeling
Operations research
Performance evaluation
Scholarly publishing
Studies
Technology
Warehouses
title Lower Bound Restrictions on Intensities in Data Envelopment Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20Bound%20Restrictions%20on%20Intensities%20in%20Data%20Envelopment%20Analysis&rft.jtitle=Journal%20of%20productivity%20analysis&rft.au=BOUHNIK,%20SYLVAIN&rft.date=2001-01-01&rft.volume=16&rft.issue=3&rft.spage=241&rft.epage=261&rft.pages=241-261&rft.issn=0895-562X&rft.eissn=1573-0441&rft_id=info:doi/10.1023/a:1012510605812&rft_dat=%3Cjstor_proqu%3E41770063%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201696879&rft_id=info:pmid/&rft_jstor_id=41770063&rfr_iscdi=true