Estimation of a covariance matrix with zeros

We consider estimation of the covariance matrix of a multivariate random vector under the constraint that certain covariances are zero. We first present an algorithm, which we call iterative conditional fitting, for computing the maximum likelihood estimate of the constrained covariance matrix, unde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2007-03, Vol.94 (1), p.199-216
Hauptverfasser: Chaudhuri, Sanjay, Drton, Mathias, Richardson, Thomas S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider estimation of the covariance matrix of a multivariate random vector under the constraint that certain covariances are zero. We first present an algorithm, which we call iterative conditional fitting, for computing the maximum likelihood estimate of the constrained covariance matrix, under the assumption of multivariate normality. In contrast to previous approaches, this algorithm has guaranteed convergence properties. Dropping the assumption of multivariate normality, we show how to estimate the covariance matrix in an empirical likelihood approach. These approaches are then compared via simulation and on an example of gene expression.
ISSN:0006-3444
1464-3510
DOI:10.1093/biomet/asm007