Dealing with limited overlap in estimation of average treatment effects

Estimation of average treatment effects under unconfounded or ignorable treatment assignment is often hampered by lack of overlap in the covariate distributions between treatment groups. This lack of overlap can lead to imprecise estimates, and can make commonly used estimators sensitive to the choi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2009-03, Vol.96 (1), p.187-199
Hauptverfasser: CRUMP, RICHARD K., HOTZ, V. JOSEPH, IMBENS, GUIDO W., MITNIK, OSCAR A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue 1
container_start_page 187
container_title Biometrika
container_volume 96
creator CRUMP, RICHARD K.
HOTZ, V. JOSEPH
IMBENS, GUIDO W.
MITNIK, OSCAR A.
description Estimation of average treatment effects under unconfounded or ignorable treatment assignment is often hampered by lack of overlap in the covariate distributions between treatment groups. This lack of overlap can lead to imprecise estimates, and can make commonly used estimators sensitive to the choice of specification. In such cases researchers have often used ad hoc methods for trimming the sample. We develop a systematic approach to addressing lack of overlap. We characterize optimal subsamples for which the average treatment effect can be estimated most precisely. Under some conditions, the optimal selection rules depend solely on the propensity score. For a wide range of distributions, a good approximation to the optimal rule is provided by the simple rule of thumb to discard all units with estimated propensity scores outside the range [0.1,0.9].
doi_str_mv 10.1093/biomet/asn055
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201696479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27798811</jstor_id><oup_id>10.1093/biomet/asn055</oup_id><sourcerecordid>27798811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-1dc49d7a1cee8983a86974164a1880c42e09a50b493db4f846fb28149889a7d33</originalsourceid><addsrcrecordid>eNqFkM2LFDEQxYMoOK4ePQpBELy0m-qk83GUXd0PF1RQEC8h0129m7G705tk1t3_3gw9zB49VB6hfryqeoS8BvYBmOHHax9GzMcuTaxpnpAVCCkq3gB7SlaMMVlxIcRz8iKlze4rG7kiZ6foBj9d078-39DBjz5jR8MdxsHN1E8UU_ajyz5MNPTUlYa7RpojujzilCn2PbY5vSTPejckfLXXI_Lz86cfJ-fV1dezi5OPV1UrDM8VdEU75aBF1EZzp6VRAqRwoDVrRY3MuIatC9ytRa-F7Ne1BmG0Nk51nB-Rt4vvHMPttixnN2EbpzLS1gykkUKZAlUL1MaQUsTezrEcER8sMLuLyi5R2SWqwl8ufMQZ2wMctvOeu7PcGVmeh1I1Y6aILwWl5p1qZcEYe5PHYvZuv6FLrRv66KbWp4NpDaBrDrJw7xeujPnvfm8WdJNyiI9WSpVcAB7v9Snj_aHv4h8rFVeNPf_12-pv-hLYl-_2lP8DJgOqbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201696479</pqid></control><display><type>article</type><title>Dealing with limited overlap in estimation of average treatment effects</title><source>RePEc</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>CRUMP, RICHARD K. ; HOTZ, V. JOSEPH ; IMBENS, GUIDO W. ; MITNIK, OSCAR A.</creator><creatorcontrib>CRUMP, RICHARD K. ; HOTZ, V. JOSEPH ; IMBENS, GUIDO W. ; MITNIK, OSCAR A.</creatorcontrib><description>Estimation of average treatment effects under unconfounded or ignorable treatment assignment is often hampered by lack of overlap in the covariate distributions between treatment groups. This lack of overlap can lead to imprecise estimates, and can make commonly used estimators sensitive to the choice of specification. In such cases researchers have often used ad hoc methods for trimming the sample. We develop a systematic approach to addressing lack of overlap. We characterize optimal subsamples for which the average treatment effect can be estimated most precisely. Under some conditions, the optimal selection rules depend solely on the propensity score. For a wide range of distributions, a good approximation to the optimal rule is provided by the simple rule of thumb to discard all units with estimated propensity scores outside the range [0.1,0.9].</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asn055</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Applications ; Arithmetic mean ; Average treatment effect ; Biology, psychology, social sciences ; Causality ; Clinical outcomes ; Distribution theory ; Estimation methods ; Estimators ; Exact sciences and technology ; General topics ; Heart catheterization ; Ignorable treatment assignment ; Infinity ; Intubation ; Mathematics ; Overlap ; Population ; Population estimates ; Probability and statistics ; Probability theory and stochastic processes ; Propensity score ; Research methods ; Sample size ; Sciences and techniques of general use ; Statistical discrepancies ; Statistics ; Studies ; Treatment effect heterogeneity ; Unconfoundedness ; Weighting functions</subject><ispartof>Biometrika, 2009-03, Vol.96 (1), p.187-199</ispartof><rights>2009 Biometrika Trust</rights><rights>Oxford University Press © 2009 Biometrika Trust 2009</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-1dc49d7a1cee8983a86974164a1880c42e09a50b493db4f846fb28149889a7d33</citedby><cites>FETCH-LOGICAL-c493t-1dc49d7a1cee8983a86974164a1880c42e09a50b493db4f846fb28149889a7d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27798811$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27798811$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,1585,4009,27929,27930,58022,58026,58255,58259</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21182316$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/oupbiomet/v_3a96_3ay_3a2009_3ai_3a1_3ap_3a187-199.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>CRUMP, RICHARD K.</creatorcontrib><creatorcontrib>HOTZ, V. JOSEPH</creatorcontrib><creatorcontrib>IMBENS, GUIDO W.</creatorcontrib><creatorcontrib>MITNIK, OSCAR A.</creatorcontrib><title>Dealing with limited overlap in estimation of average treatment effects</title><title>Biometrika</title><description>Estimation of average treatment effects under unconfounded or ignorable treatment assignment is often hampered by lack of overlap in the covariate distributions between treatment groups. This lack of overlap can lead to imprecise estimates, and can make commonly used estimators sensitive to the choice of specification. In such cases researchers have often used ad hoc methods for trimming the sample. We develop a systematic approach to addressing lack of overlap. We characterize optimal subsamples for which the average treatment effect can be estimated most precisely. Under some conditions, the optimal selection rules depend solely on the propensity score. For a wide range of distributions, a good approximation to the optimal rule is provided by the simple rule of thumb to discard all units with estimated propensity scores outside the range [0.1,0.9].</description><subject>Applications</subject><subject>Arithmetic mean</subject><subject>Average treatment effect</subject><subject>Biology, psychology, social sciences</subject><subject>Causality</subject><subject>Clinical outcomes</subject><subject>Distribution theory</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Heart catheterization</subject><subject>Ignorable treatment assignment</subject><subject>Infinity</subject><subject>Intubation</subject><subject>Mathematics</subject><subject>Overlap</subject><subject>Population</subject><subject>Population estimates</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Propensity score</subject><subject>Research methods</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Statistical discrepancies</subject><subject>Statistics</subject><subject>Studies</subject><subject>Treatment effect heterogeneity</subject><subject>Unconfoundedness</subject><subject>Weighting functions</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkM2LFDEQxYMoOK4ePQpBELy0m-qk83GUXd0PF1RQEC8h0129m7G705tk1t3_3gw9zB49VB6hfryqeoS8BvYBmOHHax9GzMcuTaxpnpAVCCkq3gB7SlaMMVlxIcRz8iKlze4rG7kiZ6foBj9d078-39DBjz5jR8MdxsHN1E8UU_ajyz5MNPTUlYa7RpojujzilCn2PbY5vSTPejckfLXXI_Lz86cfJ-fV1dezi5OPV1UrDM8VdEU75aBF1EZzp6VRAqRwoDVrRY3MuIatC9ytRa-F7Ne1BmG0Nk51nB-Rt4vvHMPttixnN2EbpzLS1gykkUKZAlUL1MaQUsTezrEcER8sMLuLyi5R2SWqwl8ufMQZ2wMctvOeu7PcGVmeh1I1Y6aILwWl5p1qZcEYe5PHYvZuv6FLrRv66KbWp4NpDaBrDrJw7xeujPnvfm8WdJNyiI9WSpVcAB7v9Snj_aHv4h8rFVeNPf_12-pv-hLYl-_2lP8DJgOqbg</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>CRUMP, RICHARD K.</creator><creator>HOTZ, V. JOSEPH</creator><creator>IMBENS, GUIDO W.</creator><creator>MITNIK, OSCAR A.</creator><general>Oxford University Press</general><general>Biometrika Trust, University College London</general><general>Oxford University Press for Biometrika Trust</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20090301</creationdate><title>Dealing with limited overlap in estimation of average treatment effects</title><author>CRUMP, RICHARD K. ; HOTZ, V. JOSEPH ; IMBENS, GUIDO W. ; MITNIK, OSCAR A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-1dc49d7a1cee8983a86974164a1880c42e09a50b493db4f846fb28149889a7d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applications</topic><topic>Arithmetic mean</topic><topic>Average treatment effect</topic><topic>Biology, psychology, social sciences</topic><topic>Causality</topic><topic>Clinical outcomes</topic><topic>Distribution theory</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Heart catheterization</topic><topic>Ignorable treatment assignment</topic><topic>Infinity</topic><topic>Intubation</topic><topic>Mathematics</topic><topic>Overlap</topic><topic>Population</topic><topic>Population estimates</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Propensity score</topic><topic>Research methods</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Statistical discrepancies</topic><topic>Statistics</topic><topic>Studies</topic><topic>Treatment effect heterogeneity</topic><topic>Unconfoundedness</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CRUMP, RICHARD K.</creatorcontrib><creatorcontrib>HOTZ, V. JOSEPH</creatorcontrib><creatorcontrib>IMBENS, GUIDO W.</creatorcontrib><creatorcontrib>MITNIK, OSCAR A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CRUMP, RICHARD K.</au><au>HOTZ, V. JOSEPH</au><au>IMBENS, GUIDO W.</au><au>MITNIK, OSCAR A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dealing with limited overlap in estimation of average treatment effects</atitle><jtitle>Biometrika</jtitle><date>2009-03-01</date><risdate>2009</risdate><volume>96</volume><issue>1</issue><spage>187</spage><epage>199</epage><pages>187-199</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>Estimation of average treatment effects under unconfounded or ignorable treatment assignment is often hampered by lack of overlap in the covariate distributions between treatment groups. This lack of overlap can lead to imprecise estimates, and can make commonly used estimators sensitive to the choice of specification. In such cases researchers have often used ad hoc methods for trimming the sample. We develop a systematic approach to addressing lack of overlap. We characterize optimal subsamples for which the average treatment effect can be estimated most precisely. Under some conditions, the optimal selection rules depend solely on the propensity score. For a wide range of distributions, a good approximation to the optimal rule is provided by the simple rule of thumb to discard all units with estimated propensity scores outside the range [0.1,0.9].</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asn055</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2009-03, Vol.96 (1), p.187-199
issn 0006-3444
1464-3510
language eng
recordid cdi_proquest_journals_201696479
source RePEc; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Applications
Arithmetic mean
Average treatment effect
Biology, psychology, social sciences
Causality
Clinical outcomes
Distribution theory
Estimation methods
Estimators
Exact sciences and technology
General topics
Heart catheterization
Ignorable treatment assignment
Infinity
Intubation
Mathematics
Overlap
Population
Population estimates
Probability and statistics
Probability theory and stochastic processes
Propensity score
Research methods
Sample size
Sciences and techniques of general use
Statistical discrepancies
Statistics
Studies
Treatment effect heterogeneity
Unconfoundedness
Weighting functions
title Dealing with limited overlap in estimation of average treatment effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T00%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dealing%20with%20limited%20overlap%20in%20estimation%20of%20average%20treatment%20effects&rft.jtitle=Biometrika&rft.au=CRUMP,%20RICHARD%20K.&rft.date=2009-03-01&rft.volume=96&rft.issue=1&rft.spage=187&rft.epage=199&rft.pages=187-199&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/asn055&rft_dat=%3Cjstor_proqu%3E27798811%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201696479&rft_id=info:pmid/&rft_jstor_id=27798811&rft_oup_id=10.1093/biomet/asn055&rfr_iscdi=true