Use of the Gibbs Sampler to Obtain Conditional Tests, with Applications
A random sample is drawn from a distribution which admits a minimal sufficient statistic for the parameters. The Gibbs sampler is proposed to generate samples, called conditionally sufficient or co-sufficient samples, from the conditional distribution of the sample given its value of the sufficient...
Gespeichert in:
Veröffentlicht in: | Biometrika 2007-12, Vol.94 (4), p.992-998 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 998 |
---|---|
container_issue | 4 |
container_start_page | 992 |
container_title | Biometrika |
container_volume | 94 |
creator | Lockhart, Richard A. O'Reilly, Federico J. Stephens, Michael A. |
description | A random sample is drawn from a distribution which admits a minimal sufficient statistic for the parameters. The Gibbs sampler is proposed to generate samples, called conditionally sufficient or co-sufficient samples, from the conditional distribution of the sample given its value of the sufficient statistic. The procedure is illustrated for the gamma distribution. Co-sufficient samples may be used to give exact tests of fit; for the gamma distribution these are compared for size and power with approximate tests based on the parametric bootstrap. |
doi_str_mv | 10.1093/biomet/asm065 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201695697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20441432</jstor_id><oup_id>10.1093/biomet/asm065</oup_id><sourcerecordid>20441432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-80f0b3de82ba29e84752729f4c5bdecf222dd54566ef288442027932841bde043</originalsourceid><addsrcrecordid>eNqFkMFr2zAUxsVYYVm7444FMRj0MLey9CRbxxK2pKXQ0aYwdhGyLROlduRJSrf-95XrkB53eHpI34-n73sIfc7JeU4ku6is60280KEngr9DsxwEZIzn5D2aEUJExgDgA_oYwma8Ci5maPEQDHYtjmuDF7aqAr7X_dAZj6PDt1XUdovnbtvYaN1Wd3hlQgzf8F8b1_hyGDpb61EJJ-io1V0wn_b9GD38-L6aL7Ob28XV_PImq4FDzErSkoo1pqSVptKUUHBaUNlCzavG1C2ltGk4cCFMS8sSgBJaSEZLyJNOgB2jL9Pcwbs_u2RGbdzOJ2dBUZILyYUsEpRNUO1dCN60avC21_5Z5USNq1LTqtS0qsRfT7w3g6kPsNsNe-5JMS0hHc-pKCFFajbV-DSMmqRKylKtY5-Gfd071KHWXev1trbhzYGUUMjXJGcTl775r7_TCd2E6PwBpgQgB0bf8toQzb-Drv2jEgUruFr--q3k8u7n6jqlWLAXUN2poA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201695697</pqid></control><display><type>article</type><title>Use of the Gibbs Sampler to Obtain Conditional Tests, with Applications</title><source>RePEc</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Lockhart, Richard A. ; O'Reilly, Federico J. ; Stephens, Michael A.</creator><creatorcontrib>Lockhart, Richard A. ; O'Reilly, Federico J. ; Stephens, Michael A.</creatorcontrib><description>A random sample is drawn from a distribution which admits a minimal sufficient statistic for the parameters. The Gibbs sampler is proposed to generate samples, called conditionally sufficient or co-sufficient samples, from the conditional distribution of the sample given its value of the sufficient statistic. The procedure is illustrated for the gamma distribution. Co-sufficient samples may be used to give exact tests of fit; for the gamma distribution these are compared for size and power with approximate tests based on the parametric bootstrap.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asm065</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Actuarial science ; Applications ; Biology, psychology, social sciences ; Bootstrap method ; Comparative studies ; Distribution theory ; Empirical distribution function test ; Estimation methods ; Exact sciences and technology ; Gaussian distributions ; General topics ; Goodness-of-fit test ; Markov analysis ; Markov chains ; Mathematics ; Miscellanea ; Normal distribution ; P values ; Parametric bootstrap ; Probability and statistics ; Probability theory and stochastic processes ; Random sampling ; Rao–Blackwell ; Sampling distributions ; Sciences and techniques of general use ; Statistics ; Sufficiency and information ; Sufficient statistic</subject><ispartof>Biometrika, 2007-12, Vol.94 (4), p.992-998</ispartof><rights>Copyright 2007 Biometrika Trust</rights><rights>Oxford University Press © 2007 Biometrika Trust 2007</rights><rights>2008 INIST-CNRS</rights><rights>2007 Biometrika Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-80f0b3de82ba29e84752729f4c5bdecf222dd54566ef288442027932841bde043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20441432$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20441432$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1584,4008,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19947904$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/oupbiomet/v_3a94_3ay_3a2007_3ai_3a4_3ap_3a992-998.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Lockhart, Richard A.</creatorcontrib><creatorcontrib>O'Reilly, Federico J.</creatorcontrib><creatorcontrib>Stephens, Michael A.</creatorcontrib><title>Use of the Gibbs Sampler to Obtain Conditional Tests, with Applications</title><title>Biometrika</title><description>A random sample is drawn from a distribution which admits a minimal sufficient statistic for the parameters. The Gibbs sampler is proposed to generate samples, called conditionally sufficient or co-sufficient samples, from the conditional distribution of the sample given its value of the sufficient statistic. The procedure is illustrated for the gamma distribution. Co-sufficient samples may be used to give exact tests of fit; for the gamma distribution these are compared for size and power with approximate tests based on the parametric bootstrap.</description><subject>Actuarial science</subject><subject>Applications</subject><subject>Biology, psychology, social sciences</subject><subject>Bootstrap method</subject><subject>Comparative studies</subject><subject>Distribution theory</subject><subject>Empirical distribution function test</subject><subject>Estimation methods</subject><subject>Exact sciences and technology</subject><subject>Gaussian distributions</subject><subject>General topics</subject><subject>Goodness-of-fit test</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematics</subject><subject>Miscellanea</subject><subject>Normal distribution</subject><subject>P values</subject><subject>Parametric bootstrap</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random sampling</subject><subject>Rao–Blackwell</subject><subject>Sampling distributions</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Sufficiency and information</subject><subject>Sufficient statistic</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkMFr2zAUxsVYYVm7444FMRj0MLey9CRbxxK2pKXQ0aYwdhGyLROlduRJSrf-95XrkB53eHpI34-n73sIfc7JeU4ku6is60280KEngr9DsxwEZIzn5D2aEUJExgDgA_oYwma8Ci5maPEQDHYtjmuDF7aqAr7X_dAZj6PDt1XUdovnbtvYaN1Wd3hlQgzf8F8b1_hyGDpb61EJJ-io1V0wn_b9GD38-L6aL7Ob28XV_PImq4FDzErSkoo1pqSVptKUUHBaUNlCzavG1C2ltGk4cCFMS8sSgBJaSEZLyJNOgB2jL9Pcwbs_u2RGbdzOJ2dBUZILyYUsEpRNUO1dCN60avC21_5Z5USNq1LTqtS0qsRfT7w3g6kPsNsNe-5JMS0hHc-pKCFFajbV-DSMmqRKylKtY5-Gfd071KHWXev1trbhzYGUUMjXJGcTl775r7_TCd2E6PwBpgQgB0bf8toQzb-Drv2jEgUruFr--q3k8u7n6jqlWLAXUN2poA</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Lockhart, Richard A.</creator><creator>O'Reilly, Federico J.</creator><creator>Stephens, Michael A.</creator><general>Oxford University Press</general><general>Biometrika Trust, University College London</general><general>Oxford University Press for Biometrika Trust</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20071201</creationdate><title>Use of the Gibbs Sampler to Obtain Conditional Tests, with Applications</title><author>Lockhart, Richard A. ; O'Reilly, Federico J. ; Stephens, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-80f0b3de82ba29e84752729f4c5bdecf222dd54566ef288442027932841bde043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Actuarial science</topic><topic>Applications</topic><topic>Biology, psychology, social sciences</topic><topic>Bootstrap method</topic><topic>Comparative studies</topic><topic>Distribution theory</topic><topic>Empirical distribution function test</topic><topic>Estimation methods</topic><topic>Exact sciences and technology</topic><topic>Gaussian distributions</topic><topic>General topics</topic><topic>Goodness-of-fit test</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematics</topic><topic>Miscellanea</topic><topic>Normal distribution</topic><topic>P values</topic><topic>Parametric bootstrap</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random sampling</topic><topic>Rao–Blackwell</topic><topic>Sampling distributions</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Sufficiency and information</topic><topic>Sufficient statistic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lockhart, Richard A.</creatorcontrib><creatorcontrib>O'Reilly, Federico J.</creatorcontrib><creatorcontrib>Stephens, Michael A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lockhart, Richard A.</au><au>O'Reilly, Federico J.</au><au>Stephens, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of the Gibbs Sampler to Obtain Conditional Tests, with Applications</atitle><jtitle>Biometrika</jtitle><date>2007-12-01</date><risdate>2007</risdate><volume>94</volume><issue>4</issue><spage>992</spage><epage>998</epage><pages>992-998</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>A random sample is drawn from a distribution which admits a minimal sufficient statistic for the parameters. The Gibbs sampler is proposed to generate samples, called conditionally sufficient or co-sufficient samples, from the conditional distribution of the sample given its value of the sufficient statistic. The procedure is illustrated for the gamma distribution. Co-sufficient samples may be used to give exact tests of fit; for the gamma distribution these are compared for size and power with approximate tests based on the parametric bootstrap.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asm065</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2007-12, Vol.94 (4), p.992-998 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_proquest_journals_201695697 |
source | RePEc; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current) |
subjects | Actuarial science Applications Biology, psychology, social sciences Bootstrap method Comparative studies Distribution theory Empirical distribution function test Estimation methods Exact sciences and technology Gaussian distributions General topics Goodness-of-fit test Markov analysis Markov chains Mathematics Miscellanea Normal distribution P values Parametric bootstrap Probability and statistics Probability theory and stochastic processes Random sampling Rao–Blackwell Sampling distributions Sciences and techniques of general use Statistics Sufficiency and information Sufficient statistic |
title | Use of the Gibbs Sampler to Obtain Conditional Tests, with Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20the%20Gibbs%20Sampler%20to%20Obtain%20Conditional%20Tests,%20with%20Applications&rft.jtitle=Biometrika&rft.au=Lockhart,%20Richard%20A.&rft.date=2007-12-01&rft.volume=94&rft.issue=4&rft.spage=992&rft.epage=998&rft.pages=992-998&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/asm065&rft_dat=%3Cjstor_proqu%3E20441432%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201695697&rft_id=info:pmid/&rft_jstor_id=20441432&rft_oup_id=10.1093/biomet/asm065&rfr_iscdi=true |