Use of the Gibbs Sampler to Obtain Conditional Tests, with Applications

A random sample is drawn from a distribution which admits a minimal sufficient statistic for the parameters. The Gibbs sampler is proposed to generate samples, called conditionally sufficient or co-sufficient samples, from the conditional distribution of the sample given its value of the sufficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2007-12, Vol.94 (4), p.992-998
Hauptverfasser: Lockhart, Richard A., O'Reilly, Federico J., Stephens, Michael A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 998
container_issue 4
container_start_page 992
container_title Biometrika
container_volume 94
creator Lockhart, Richard A.
O'Reilly, Federico J.
Stephens, Michael A.
description A random sample is drawn from a distribution which admits a minimal sufficient statistic for the parameters. The Gibbs sampler is proposed to generate samples, called conditionally sufficient or co-sufficient samples, from the conditional distribution of the sample given its value of the sufficient statistic. The procedure is illustrated for the gamma distribution. Co-sufficient samples may be used to give exact tests of fit; for the gamma distribution these are compared for size and power with approximate tests based on the parametric bootstrap.
doi_str_mv 10.1093/biomet/asm065
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201695697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20441432</jstor_id><oup_id>10.1093/biomet/asm065</oup_id><sourcerecordid>20441432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-80f0b3de82ba29e84752729f4c5bdecf222dd54566ef288442027932841bde043</originalsourceid><addsrcrecordid>eNqFkMFr2zAUxsVYYVm7444FMRj0MLey9CRbxxK2pKXQ0aYwdhGyLROlduRJSrf-95XrkB53eHpI34-n73sIfc7JeU4ku6is60280KEngr9DsxwEZIzn5D2aEUJExgDgA_oYwma8Ci5maPEQDHYtjmuDF7aqAr7X_dAZj6PDt1XUdovnbtvYaN1Wd3hlQgzf8F8b1_hyGDpb61EJJ-io1V0wn_b9GD38-L6aL7Ob28XV_PImq4FDzErSkoo1pqSVptKUUHBaUNlCzavG1C2ltGk4cCFMS8sSgBJaSEZLyJNOgB2jL9Pcwbs_u2RGbdzOJ2dBUZILyYUsEpRNUO1dCN60avC21_5Z5USNq1LTqtS0qsRfT7w3g6kPsNsNe-5JMS0hHc-pKCFFajbV-DSMmqRKylKtY5-Gfd071KHWXev1trbhzYGUUMjXJGcTl775r7_TCd2E6PwBpgQgB0bf8toQzb-Drv2jEgUruFr--q3k8u7n6jqlWLAXUN2poA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201695697</pqid></control><display><type>article</type><title>Use of the Gibbs Sampler to Obtain Conditional Tests, with Applications</title><source>RePEc</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Lockhart, Richard A. ; O'Reilly, Federico J. ; Stephens, Michael A.</creator><creatorcontrib>Lockhart, Richard A. ; O'Reilly, Federico J. ; Stephens, Michael A.</creatorcontrib><description>A random sample is drawn from a distribution which admits a minimal sufficient statistic for the parameters. The Gibbs sampler is proposed to generate samples, called conditionally sufficient or co-sufficient samples, from the conditional distribution of the sample given its value of the sufficient statistic. The procedure is illustrated for the gamma distribution. Co-sufficient samples may be used to give exact tests of fit; for the gamma distribution these are compared for size and power with approximate tests based on the parametric bootstrap.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asm065</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Actuarial science ; Applications ; Biology, psychology, social sciences ; Bootstrap method ; Comparative studies ; Distribution theory ; Empirical distribution function test ; Estimation methods ; Exact sciences and technology ; Gaussian distributions ; General topics ; Goodness-of-fit test ; Markov analysis ; Markov chains ; Mathematics ; Miscellanea ; Normal distribution ; P values ; Parametric bootstrap ; Probability and statistics ; Probability theory and stochastic processes ; Random sampling ; Rao–Blackwell ; Sampling distributions ; Sciences and techniques of general use ; Statistics ; Sufficiency and information ; Sufficient statistic</subject><ispartof>Biometrika, 2007-12, Vol.94 (4), p.992-998</ispartof><rights>Copyright 2007 Biometrika Trust</rights><rights>Oxford University Press © 2007 Biometrika Trust 2007</rights><rights>2008 INIST-CNRS</rights><rights>2007 Biometrika Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-80f0b3de82ba29e84752729f4c5bdecf222dd54566ef288442027932841bde043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20441432$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20441432$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1584,4008,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19947904$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/oupbiomet/v_3a94_3ay_3a2007_3ai_3a4_3ap_3a992-998.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Lockhart, Richard A.</creatorcontrib><creatorcontrib>O'Reilly, Federico J.</creatorcontrib><creatorcontrib>Stephens, Michael A.</creatorcontrib><title>Use of the Gibbs Sampler to Obtain Conditional Tests, with Applications</title><title>Biometrika</title><description>A random sample is drawn from a distribution which admits a minimal sufficient statistic for the parameters. The Gibbs sampler is proposed to generate samples, called conditionally sufficient or co-sufficient samples, from the conditional distribution of the sample given its value of the sufficient statistic. The procedure is illustrated for the gamma distribution. Co-sufficient samples may be used to give exact tests of fit; for the gamma distribution these are compared for size and power with approximate tests based on the parametric bootstrap.</description><subject>Actuarial science</subject><subject>Applications</subject><subject>Biology, psychology, social sciences</subject><subject>Bootstrap method</subject><subject>Comparative studies</subject><subject>Distribution theory</subject><subject>Empirical distribution function test</subject><subject>Estimation methods</subject><subject>Exact sciences and technology</subject><subject>Gaussian distributions</subject><subject>General topics</subject><subject>Goodness-of-fit test</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematics</subject><subject>Miscellanea</subject><subject>Normal distribution</subject><subject>P values</subject><subject>Parametric bootstrap</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random sampling</subject><subject>Rao–Blackwell</subject><subject>Sampling distributions</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Sufficiency and information</subject><subject>Sufficient statistic</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkMFr2zAUxsVYYVm7444FMRj0MLey9CRbxxK2pKXQ0aYwdhGyLROlduRJSrf-95XrkB53eHpI34-n73sIfc7JeU4ku6is60280KEngr9DsxwEZIzn5D2aEUJExgDgA_oYwma8Ci5maPEQDHYtjmuDF7aqAr7X_dAZj6PDt1XUdovnbtvYaN1Wd3hlQgzf8F8b1_hyGDpb61EJJ-io1V0wn_b9GD38-L6aL7Ob28XV_PImq4FDzErSkoo1pqSVptKUUHBaUNlCzavG1C2ltGk4cCFMS8sSgBJaSEZLyJNOgB2jL9Pcwbs_u2RGbdzOJ2dBUZILyYUsEpRNUO1dCN60avC21_5Z5USNq1LTqtS0qsRfT7w3g6kPsNsNe-5JMS0hHc-pKCFFajbV-DSMmqRKylKtY5-Gfd071KHWXev1trbhzYGUUMjXJGcTl775r7_TCd2E6PwBpgQgB0bf8toQzb-Drv2jEgUruFr--q3k8u7n6jqlWLAXUN2poA</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Lockhart, Richard A.</creator><creator>O'Reilly, Federico J.</creator><creator>Stephens, Michael A.</creator><general>Oxford University Press</general><general>Biometrika Trust, University College London</general><general>Oxford University Press for Biometrika Trust</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20071201</creationdate><title>Use of the Gibbs Sampler to Obtain Conditional Tests, with Applications</title><author>Lockhart, Richard A. ; O'Reilly, Federico J. ; Stephens, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-80f0b3de82ba29e84752729f4c5bdecf222dd54566ef288442027932841bde043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Actuarial science</topic><topic>Applications</topic><topic>Biology, psychology, social sciences</topic><topic>Bootstrap method</topic><topic>Comparative studies</topic><topic>Distribution theory</topic><topic>Empirical distribution function test</topic><topic>Estimation methods</topic><topic>Exact sciences and technology</topic><topic>Gaussian distributions</topic><topic>General topics</topic><topic>Goodness-of-fit test</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematics</topic><topic>Miscellanea</topic><topic>Normal distribution</topic><topic>P values</topic><topic>Parametric bootstrap</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random sampling</topic><topic>Rao–Blackwell</topic><topic>Sampling distributions</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Sufficiency and information</topic><topic>Sufficient statistic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lockhart, Richard A.</creatorcontrib><creatorcontrib>O'Reilly, Federico J.</creatorcontrib><creatorcontrib>Stephens, Michael A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lockhart, Richard A.</au><au>O'Reilly, Federico J.</au><au>Stephens, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of the Gibbs Sampler to Obtain Conditional Tests, with Applications</atitle><jtitle>Biometrika</jtitle><date>2007-12-01</date><risdate>2007</risdate><volume>94</volume><issue>4</issue><spage>992</spage><epage>998</epage><pages>992-998</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>A random sample is drawn from a distribution which admits a minimal sufficient statistic for the parameters. The Gibbs sampler is proposed to generate samples, called conditionally sufficient or co-sufficient samples, from the conditional distribution of the sample given its value of the sufficient statistic. The procedure is illustrated for the gamma distribution. Co-sufficient samples may be used to give exact tests of fit; for the gamma distribution these are compared for size and power with approximate tests based on the parametric bootstrap.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asm065</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2007-12, Vol.94 (4), p.992-998
issn 0006-3444
1464-3510
language eng
recordid cdi_proquest_journals_201695697
source RePEc; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Actuarial science
Applications
Biology, psychology, social sciences
Bootstrap method
Comparative studies
Distribution theory
Empirical distribution function test
Estimation methods
Exact sciences and technology
Gaussian distributions
General topics
Goodness-of-fit test
Markov analysis
Markov chains
Mathematics
Miscellanea
Normal distribution
P values
Parametric bootstrap
Probability and statistics
Probability theory and stochastic processes
Random sampling
Rao–Blackwell
Sampling distributions
Sciences and techniques of general use
Statistics
Sufficiency and information
Sufficient statistic
title Use of the Gibbs Sampler to Obtain Conditional Tests, with Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20the%20Gibbs%20Sampler%20to%20Obtain%20Conditional%20Tests,%20with%20Applications&rft.jtitle=Biometrika&rft.au=Lockhart,%20Richard%20A.&rft.date=2007-12-01&rft.volume=94&rft.issue=4&rft.spage=992&rft.epage=998&rft.pages=992-998&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/asm065&rft_dat=%3Cjstor_proqu%3E20441432%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201695697&rft_id=info:pmid/&rft_jstor_id=20441432&rft_oup_id=10.1093/biomet/asm065&rfr_iscdi=true