Observation‐driven models for Poisson counts

This paper is concerned with a general class of observation‐driven models for time series of counts whose conditional distributions given past observations and explanatory variables follow a Poisson distribution. These models provide a flexible framework for modelling a wide range of dependence stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2003-12, Vol.90 (4), p.777-790
Hauptverfasser: Davis, Richard A., Dunsmuir, William T. M., Streett, Sarah B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 790
container_issue 4
container_start_page 777
container_title Biometrika
container_volume 90
creator Davis, Richard A.
Dunsmuir, William T. M.
Streett, Sarah B.
description This paper is concerned with a general class of observation‐driven models for time series of counts whose conditional distributions given past observations and explanatory variables follow a Poisson distribution. These models provide a flexible framework for modelling a wide range of dependence structures. Conditions for stationarity and ergodicity of these processes are established from which the large‐sample properties of the maximum likelihood estimators can be derived. Simulations are provided to give additional insight into the finite‐sample behaviour of the estimators. Finally an application to a regression model for daily counts of asthma presentations at a Sydney hospital is described.
doi_str_mv 10.1093/biomet/90.4.777
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201695633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30042088</jstor_id><sourcerecordid>30042088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-cb0cb41816d612daf2b5d736eca2b08efbb9303adb336ab69c3b76c4df6835253</originalsourceid><addsrcrecordid>eNpFkM1KAzEUhYMoWH_WroQiuJz2Zm6SmVmKWKuIulAUNyHJZHBqOxmTadGdj-Az-iRGptTF4XI53_3hEHJEYUShwLGu3cJ24wJGbJRl2RYZUCZYgpzCNhkAgEiQMbZL9kKY_bWCiwEZ3elg_Up1tWt-vr5LX69sM1y40s7DsHJ-eO_qEFwzNG7ZdOGA7FRqHuzhuu6Tx8nFw_k0ubm7vDo_u0lMvNklRoPRjOZUlIKmpapSzcsMhTUq1ZDbSusCAVWpEYXSojCoM2FYWYkcecpxn5z0e1vv3pc2dHLmlr6JJ2UKVBRcIEZo3EPGuxC8rWTr64Xyn5KC_MtE9pnIAiSTMZM4cd1PeNtas8Hdsl2TK4kq0qg-o1IAjKWOYlFtVFwiswi8dou47HT9owpGzSuvGlOH_x84Ul7kELnjnpuFzvmNjwAshTyPftL7dejsx8ZX_k2KDDMup88v8unplsN0IiTDX-IqlbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201695633</pqid></control><display><type>article</type><title>Observation‐driven models for Poisson counts</title><source>RePEc</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Davis, Richard A. ; Dunsmuir, William T. M. ; Streett, Sarah B.</creator><creatorcontrib>Davis, Richard A. ; Dunsmuir, William T. M. ; Streett, Sarah B.</creatorcontrib><description>This paper is concerned with a general class of observation‐driven models for time series of counts whose conditional distributions given past observations and explanatory variables follow a Poisson distribution. These models provide a flexible framework for modelling a wide range of dependence structures. Conditions for stationarity and ergodicity of these processes are established from which the large‐sample properties of the maximum likelihood estimators can be derived. Simulations are provided to give additional insight into the finite‐sample behaviour of the estimators. Finally an application to a regression model for daily counts of asthma presentations at a Sydney hospital is described.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/90.4.777</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Asthma ; Asthma hospitalisation ; Autoregressive moving average ; Ergodic theory ; Exact sciences and technology ; Inference from stochastic processes; time series analysis ; Linear inference, regression ; Mathematics ; Maximum likelihood estimation ; Maximum likelihood estimators ; Modeling ; Observation‐driven model ; Parametric models ; Poisson‐valued time series ; Probability and statistics ; Random variables ; Regression analysis ; Sciences and techniques of general use ; Statistics ; Time series ; Time series models</subject><ispartof>Biometrika, 2003-12, Vol.90 (4), p.777-790</ispartof><rights>Copyright 2003 Biometrika Trust</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Dec 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-cb0cb41816d612daf2b5d736eca2b08efbb9303adb336ab69c3b76c4df6835253</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30042088$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30042088$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4008,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15315980$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/oupbiomet/v_3a90_3ay_3a2003_3ai_3a4_3ap_3a777-790.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Davis, Richard A.</creatorcontrib><creatorcontrib>Dunsmuir, William T. M.</creatorcontrib><creatorcontrib>Streett, Sarah B.</creatorcontrib><title>Observation‐driven models for Poisson counts</title><title>Biometrika</title><addtitle>Biometrika</addtitle><description>This paper is concerned with a general class of observation‐driven models for time series of counts whose conditional distributions given past observations and explanatory variables follow a Poisson distribution. These models provide a flexible framework for modelling a wide range of dependence structures. Conditions for stationarity and ergodicity of these processes are established from which the large‐sample properties of the maximum likelihood estimators can be derived. Simulations are provided to give additional insight into the finite‐sample behaviour of the estimators. Finally an application to a regression model for daily counts of asthma presentations at a Sydney hospital is described.</description><subject>Asthma</subject><subject>Asthma hospitalisation</subject><subject>Autoregressive moving average</subject><subject>Ergodic theory</subject><subject>Exact sciences and technology</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Linear inference, regression</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Modeling</subject><subject>Observation‐driven model</subject><subject>Parametric models</subject><subject>Poisson‐valued time series</subject><subject>Probability and statistics</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Time series</subject><subject>Time series models</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNpFkM1KAzEUhYMoWH_WroQiuJz2Zm6SmVmKWKuIulAUNyHJZHBqOxmTadGdj-Az-iRGptTF4XI53_3hEHJEYUShwLGu3cJ24wJGbJRl2RYZUCZYgpzCNhkAgEiQMbZL9kKY_bWCiwEZ3elg_Up1tWt-vr5LX69sM1y40s7DsHJ-eO_qEFwzNG7ZdOGA7FRqHuzhuu6Tx8nFw_k0ubm7vDo_u0lMvNklRoPRjOZUlIKmpapSzcsMhTUq1ZDbSusCAVWpEYXSojCoM2FYWYkcecpxn5z0e1vv3pc2dHLmlr6JJ2UKVBRcIEZo3EPGuxC8rWTr64Xyn5KC_MtE9pnIAiSTMZM4cd1PeNtas8Hdsl2TK4kq0qg-o1IAjKWOYlFtVFwiswi8dou47HT9owpGzSuvGlOH_x84Ul7kELnjnpuFzvmNjwAshTyPftL7dejsx8ZX_k2KDDMup88v8unplsN0IiTDX-IqlbA</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Davis, Richard A.</creator><creator>Dunsmuir, William T. M.</creator><creator>Streett, Sarah B.</creator><general>Oxford University Press</general><general>Biometrika Trust, University College London</general><general>Oxford University Press for Biometrika Trust</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20031201</creationdate><title>Observation‐driven models for Poisson counts</title><author>Davis, Richard A. ; Dunsmuir, William T. M. ; Streett, Sarah B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-cb0cb41816d612daf2b5d736eca2b08efbb9303adb336ab69c3b76c4df6835253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Asthma</topic><topic>Asthma hospitalisation</topic><topic>Autoregressive moving average</topic><topic>Ergodic theory</topic><topic>Exact sciences and technology</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Linear inference, regression</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Modeling</topic><topic>Observation‐driven model</topic><topic>Parametric models</topic><topic>Poisson‐valued time series</topic><topic>Probability and statistics</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Time series</topic><topic>Time series models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, Richard A.</creatorcontrib><creatorcontrib>Dunsmuir, William T. M.</creatorcontrib><creatorcontrib>Streett, Sarah B.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, Richard A.</au><au>Dunsmuir, William T. M.</au><au>Streett, Sarah B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation‐driven models for Poisson counts</atitle><jtitle>Biometrika</jtitle><addtitle>Biometrika</addtitle><date>2003-12-01</date><risdate>2003</risdate><volume>90</volume><issue>4</issue><spage>777</spage><epage>790</epage><pages>777-790</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>This paper is concerned with a general class of observation‐driven models for time series of counts whose conditional distributions given past observations and explanatory variables follow a Poisson distribution. These models provide a flexible framework for modelling a wide range of dependence structures. Conditions for stationarity and ergodicity of these processes are established from which the large‐sample properties of the maximum likelihood estimators can be derived. Simulations are provided to give additional insight into the finite‐sample behaviour of the estimators. Finally an application to a regression model for daily counts of asthma presentations at a Sydney hospital is described.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/90.4.777</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2003-12, Vol.90 (4), p.777-790
issn 0006-3444
1464-3510
language eng
recordid cdi_proquest_journals_201695633
source RePEc; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Asthma
Asthma hospitalisation
Autoregressive moving average
Ergodic theory
Exact sciences and technology
Inference from stochastic processes
time series analysis
Linear inference, regression
Mathematics
Maximum likelihood estimation
Maximum likelihood estimators
Modeling
Observation‐driven model
Parametric models
Poisson‐valued time series
Probability and statistics
Random variables
Regression analysis
Sciences and techniques of general use
Statistics
Time series
Time series models
title Observation‐driven models for Poisson counts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%E2%80%90driven%20models%20for%20Poisson%20counts&rft.jtitle=Biometrika&rft.au=Davis,%20Richard%20A.&rft.date=2003-12-01&rft.volume=90&rft.issue=4&rft.spage=777&rft.epage=790&rft.pages=777-790&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/90.4.777&rft_dat=%3Cjstor_proqu%3E30042088%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201695633&rft_id=info:pmid/&rft_jstor_id=30042088&rfr_iscdi=true