Miscellanea. A note on Bayesian design for the normal linear model with unknown error variance

The Bayesian theory of optimal experimental design for the normal linear model has been developed under the assumption of known variance. The insensitivity of specific design criteria to prior assumptions on the variance distribution has been demonstrated in special cases, but a general result showi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2000-03, Vol.87 (1), p.222-227
1. Verfasser: Verdinelli, I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 227
container_issue 1
container_start_page 222
container_title Biometrika
container_volume 87
creator Verdinelli, I
description The Bayesian theory of optimal experimental design for the normal linear model has been developed under the assumption of known variance. The insensitivity of specific design criteria to prior assumptions on the variance distribution has been demonstrated in special cases, but a general result showing the way in which Bayesian optimal designs are affected by prior information on the variance is lacking. This note proves that Bayesian designs are insensitive to information about the variance in a more general way than previously thought.
doi_str_mv 10.1093/biomet/87.1.222
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_201694136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>372784801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1516-12f973b3f98502e45ec657588f25d03d9b2ca83a7eb62bae5ae63072bf3cf4823</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKfX3gbv2-WjSdvLOXRTpoIoyC4MaXvqurWJJp1z_96MiVcvh_O858CD0CUlMSU5HxWN7aAfZWlMY8bYERrQRCYRF5QcowEhREY8SZJTdOb9aj9KIQfo_aHxJbStNqBjPMbG9oCtwdd6B77RBlchPgyurcP9EsLedbrFbRN4hztbQYu3Tb_EG7M2dmswOBfQb-1CuYRzdFLr1sPFXw7R6-3Ny2QWzZ-md5PxPCqpoDKirM5TXvA6zwRhkAgopUhFltVMVIRXecFKnXGdQiFZoUFokJykrKh5WScZ40N0dbj76ezXBnyvVnbjTHipGKEyTyiXARodoNJZ7x3U6tM1nXY7RYnaO1QHhypLFVXBYWhEh0bje_j5x7VbK5nyVKjZ20KJKV2Q5_mjuue_DEh1Sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201694136</pqid></control><display><type>article</type><title>Miscellanea. A note on Bayesian design for the normal linear model with unknown error variance</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Verdinelli, I</creator><creatorcontrib>Verdinelli, I</creatorcontrib><description>The Bayesian theory of optimal experimental design for the normal linear model has been developed under the assumption of known variance. The insensitivity of specific design criteria to prior assumptions on the variance distribution has been demonstrated in special cases, but a general result showing the way in which Bayesian optimal designs are affected by prior information on the variance is lacking. This note proves that Bayesian designs are insensitive to information about the variance in a more general way than previously thought.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/87.1.222</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Bayesian design criteria ; Design for prediction ; Design optimization ; Expected utility ; Expected utility function ; Factorial experiments ; Linear model ; Parameter estimation ; Utility functions</subject><ispartof>Biometrika, 2000-03, Vol.87 (1), p.222-227</ispartof><rights>Copyright Oxford University Press(England) Mar 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1516-12f973b3f98502e45ec657588f25d03d9b2ca83a7eb62bae5ae63072bf3cf4823</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Verdinelli, I</creatorcontrib><title>Miscellanea. A note on Bayesian design for the normal linear model with unknown error variance</title><title>Biometrika</title><addtitle>Biometrika</addtitle><description>The Bayesian theory of optimal experimental design for the normal linear model has been developed under the assumption of known variance. The insensitivity of specific design criteria to prior assumptions on the variance distribution has been demonstrated in special cases, but a general result showing the way in which Bayesian optimal designs are affected by prior information on the variance is lacking. This note proves that Bayesian designs are insensitive to information about the variance in a more general way than previously thought.</description><subject>Bayesian design criteria</subject><subject>Design for prediction</subject><subject>Design optimization</subject><subject>Expected utility</subject><subject>Expected utility function</subject><subject>Factorial experiments</subject><subject>Linear model</subject><subject>Parameter estimation</subject><subject>Utility functions</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKfX3gbv2-WjSdvLOXRTpoIoyC4MaXvqurWJJp1z_96MiVcvh_O858CD0CUlMSU5HxWN7aAfZWlMY8bYERrQRCYRF5QcowEhREY8SZJTdOb9aj9KIQfo_aHxJbStNqBjPMbG9oCtwdd6B77RBlchPgyurcP9EsLedbrFbRN4hztbQYu3Tb_EG7M2dmswOBfQb-1CuYRzdFLr1sPFXw7R6-3Ny2QWzZ-md5PxPCqpoDKirM5TXvA6zwRhkAgopUhFltVMVIRXecFKnXGdQiFZoUFokJykrKh5WScZ40N0dbj76ezXBnyvVnbjTHipGKEyTyiXARodoNJZ7x3U6tM1nXY7RYnaO1QHhypLFVXBYWhEh0bje_j5x7VbK5nyVKjZ20KJKV2Q5_mjuue_DEh1Sw</recordid><startdate>200003</startdate><enddate>200003</enddate><creator>Verdinelli, I</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>200003</creationdate><title>Miscellanea. A note on Bayesian design for the normal linear model with unknown error variance</title><author>Verdinelli, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1516-12f973b3f98502e45ec657588f25d03d9b2ca83a7eb62bae5ae63072bf3cf4823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bayesian design criteria</topic><topic>Design for prediction</topic><topic>Design optimization</topic><topic>Expected utility</topic><topic>Expected utility function</topic><topic>Factorial experiments</topic><topic>Linear model</topic><topic>Parameter estimation</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verdinelli, I</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verdinelli, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Miscellanea. A note on Bayesian design for the normal linear model with unknown error variance</atitle><jtitle>Biometrika</jtitle><addtitle>Biometrika</addtitle><date>2000-03</date><risdate>2000</risdate><volume>87</volume><issue>1</issue><spage>222</spage><epage>227</epage><pages>222-227</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>The Bayesian theory of optimal experimental design for the normal linear model has been developed under the assumption of known variance. The insensitivity of specific design criteria to prior assumptions on the variance distribution has been demonstrated in special cases, but a general result showing the way in which Bayesian optimal designs are affected by prior information on the variance is lacking. This note proves that Bayesian designs are insensitive to information about the variance in a more general way than previously thought.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/87.1.222</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2000-03, Vol.87 (1), p.222-227
issn 0006-3444
1464-3510
language eng
recordid cdi_proquest_journals_201694136
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects Bayesian design criteria
Design for prediction
Design optimization
Expected utility
Expected utility function
Factorial experiments
Linear model
Parameter estimation
Utility functions
title Miscellanea. A note on Bayesian design for the normal linear model with unknown error variance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Miscellanea.%20A%20note%20on%20Bayesian%20design%20for%20the%20normal%20linear%20model%20with%20unknown%20error%20variance&rft.jtitle=Biometrika&rft.au=Verdinelli,%20I&rft.date=2000-03&rft.volume=87&rft.issue=1&rft.spage=222&rft.epage=227&rft.pages=222-227&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/87.1.222&rft_dat=%3Cproquest_cross%3E372784801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201694136&rft_id=info:pmid/&rfr_iscdi=true