Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region
The contribution of air-sea interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-r...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied climatology 2018-04, Vol.132 (1-2), p.31-40 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | 1-2 |
container_start_page | 31 |
container_title | Theoretical and applied climatology |
container_volume | 132 |
creator | Wang, Xujia Zheng, Zhihai Feng, Guolin |
description | The contribution of air-sea interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-range prediction skill was evaluated by anomaly correlation coefficient (ACC), root mean square error (RMSE), and signal-to-noise ratio (SNR). The coupled model has a better prediction skill than its atmospheric model, especially, the air-sea interaction in July made a greater contribution for the improvement of prediction skill than other months. The prediction skill of the extratropical region in the coupled model reaches 16–18 days in all months, while the atmospheric model reaches 10–11 days in January, April, and July and only 7–8 days in October, indicating that the air-sea interaction can extend the prediction skill of the atmospheric model by about 1 week. The errors of both the coupled model and the atmospheric model reach saturation in about 20 days, suggesting that the predictable range is less than 3 weeks. |
doi_str_mv | 10.1007/s00704-017-2071-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2016939689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A533217930</galeid><sourcerecordid>A533217930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-da591cc8c9a8adb0d4c49d0365804c06f9356216b6aec76c2d31bf7b64463b263</originalsourceid><addsrcrecordid>eNp1kc9qFTEUxgdR8Fp9AHcBVy5Sk0kmmSxLqVooKP4BdyGTnMxNuZ2MSa7oA_gePotP5qlTkC4kIQdyvt-XE76ue87ZKWdMv6p4MEkZ17RnmlPxoNtxKSSVchQPux02NNVm_PK4e1LrNWOsV0rvup8XMYJvleRIXCq0giNpaVCcbykvBDd8b7AECLS4ZQayFgjprhnJDHnN2G_JHcge0rxvxDUyMPb71_69I_kbFNL2QJZcsJS_dsW1ktfkESkwo9PT7lF0hwrP7upJ9_n1xafzt_Tq3ZvL87Mr6sVoGg1uMNz70Rs3ujCxIL00gQk1jEx6pqIRg-q5mpQDr5Xvg-BT1JOSUompV-Kke7H5riV_PUJt9jofy4JP2p5xZYRRo0HV6aaa3QFsWmLGiT2uADfJ5wViwvuzQYieayMYAi_vAahp-M3ZHWu1lx8_3NfyTetLrrVAtGtJN678sJzZ2yjtFqXFxOxtlFYg029MRS1mUP6N_X_oD0raokc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016939689</pqid></control><display><type>article</type><title>Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region</title><source>SpringerLink Journals</source><creator>Wang, Xujia ; Zheng, Zhihai ; Feng, Guolin</creator><creatorcontrib>Wang, Xujia ; Zheng, Zhihai ; Feng, Guolin</creatorcontrib><description>The contribution of air-sea interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-range prediction skill was evaluated by anomaly correlation coefficient (ACC), root mean square error (RMSE), and signal-to-noise ratio (SNR). The coupled model has a better prediction skill than its atmospheric model, especially, the air-sea interaction in July made a greater contribution for the improvement of prediction skill than other months. The prediction skill of the extratropical region in the coupled model reaches 16–18 days in all months, while the atmospheric model reaches 10–11 days in January, April, and July and only 7–8 days in October, indicating that the air-sea interaction can extend the prediction skill of the atmospheric model by about 1 week. The errors of both the coupled model and the atmospheric model reach saturation in about 20 days, suggesting that the predictable range is less than 3 weeks.</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-017-2071-3</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Air ; Air-sea interaction ; Analysis ; Aquatic Pollution ; Atmospheric models ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Climate models ; Climate science ; Climatology ; Correlation coefficient ; Correlation coefficients ; Dynamic height ; Earth and Environmental Science ; Earth Sciences ; Geopotential ; Geopotential height ; Mathematical models ; Ocean-atmosphere interaction ; Original Paper ; Root-mean-square errors ; Saturation ; Signal-to-noise ratio ; Temperature (air-sea) ; Waste Water Technology ; Water Management ; Water Pollution Control ; Weather forecasting</subject><ispartof>Theoretical and applied climatology, 2018-04, Vol.132 (1-2), p.31-40</ispartof><rights>Springer-Verlag Wien 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Theoretical and Applied Climatology is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-da591cc8c9a8adb0d4c49d0365804c06f9356216b6aec76c2d31bf7b64463b263</citedby><cites>FETCH-LOGICAL-c389t-da591cc8c9a8adb0d4c49d0365804c06f9356216b6aec76c2d31bf7b64463b263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00704-017-2071-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00704-017-2071-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Xujia</creatorcontrib><creatorcontrib>Zheng, Zhihai</creatorcontrib><creatorcontrib>Feng, Guolin</creatorcontrib><title>Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>The contribution of air-sea interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-range prediction skill was evaluated by anomaly correlation coefficient (ACC), root mean square error (RMSE), and signal-to-noise ratio (SNR). The coupled model has a better prediction skill than its atmospheric model, especially, the air-sea interaction in July made a greater contribution for the improvement of prediction skill than other months. The prediction skill of the extratropical region in the coupled model reaches 16–18 days in all months, while the atmospheric model reaches 10–11 days in January, April, and July and only 7–8 days in October, indicating that the air-sea interaction can extend the prediction skill of the atmospheric model by about 1 week. The errors of both the coupled model and the atmospheric model reach saturation in about 20 days, suggesting that the predictable range is less than 3 weeks.</description><subject>Air</subject><subject>Air-sea interaction</subject><subject>Analysis</subject><subject>Aquatic Pollution</subject><subject>Atmospheric models</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Climate models</subject><subject>Climate science</subject><subject>Climatology</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Dynamic height</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geopotential</subject><subject>Geopotential height</subject><subject>Mathematical models</subject><subject>Ocean-atmosphere interaction</subject><subject>Original Paper</subject><subject>Root-mean-square errors</subject><subject>Saturation</subject><subject>Signal-to-noise ratio</subject><subject>Temperature (air-sea)</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Weather forecasting</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kc9qFTEUxgdR8Fp9AHcBVy5Sk0kmmSxLqVooKP4BdyGTnMxNuZ2MSa7oA_gePotP5qlTkC4kIQdyvt-XE76ue87ZKWdMv6p4MEkZ17RnmlPxoNtxKSSVchQPux02NNVm_PK4e1LrNWOsV0rvup8XMYJvleRIXCq0giNpaVCcbykvBDd8b7AECLS4ZQayFgjprhnJDHnN2G_JHcge0rxvxDUyMPb71_69I_kbFNL2QJZcsJS_dsW1ktfkESkwo9PT7lF0hwrP7upJ9_n1xafzt_Tq3ZvL87Mr6sVoGg1uMNz70Rs3ujCxIL00gQk1jEx6pqIRg-q5mpQDr5Xvg-BT1JOSUompV-Kke7H5riV_PUJt9jofy4JP2p5xZYRRo0HV6aaa3QFsWmLGiT2uADfJ5wViwvuzQYieayMYAi_vAahp-M3ZHWu1lx8_3NfyTetLrrVAtGtJN678sJzZ2yjtFqXFxOxtlFYg029MRS1mUP6N_X_oD0raokc</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Wang, Xujia</creator><creator>Zheng, Zhihai</creator><creator>Feng, Guolin</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20180401</creationdate><title>Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region</title><author>Wang, Xujia ; Zheng, Zhihai ; Feng, Guolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-da591cc8c9a8adb0d4c49d0365804c06f9356216b6aec76c2d31bf7b64463b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air</topic><topic>Air-sea interaction</topic><topic>Analysis</topic><topic>Aquatic Pollution</topic><topic>Atmospheric models</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Climate models</topic><topic>Climate science</topic><topic>Climatology</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Dynamic height</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geopotential</topic><topic>Geopotential height</topic><topic>Mathematical models</topic><topic>Ocean-atmosphere interaction</topic><topic>Original Paper</topic><topic>Root-mean-square errors</topic><topic>Saturation</topic><topic>Signal-to-noise ratio</topic><topic>Temperature (air-sea)</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xujia</creatorcontrib><creatorcontrib>Zheng, Zhihai</creatorcontrib><creatorcontrib>Feng, Guolin</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xujia</au><au>Zheng, Zhihai</au><au>Feng, Guolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>132</volume><issue>1-2</issue><spage>31</spage><epage>40</epage><pages>31-40</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>The contribution of air-sea interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-range prediction skill was evaluated by anomaly correlation coefficient (ACC), root mean square error (RMSE), and signal-to-noise ratio (SNR). The coupled model has a better prediction skill than its atmospheric model, especially, the air-sea interaction in July made a greater contribution for the improvement of prediction skill than other months. The prediction skill of the extratropical region in the coupled model reaches 16–18 days in all months, while the atmospheric model reaches 10–11 days in January, April, and July and only 7–8 days in October, indicating that the air-sea interaction can extend the prediction skill of the atmospheric model by about 1 week. The errors of both the coupled model and the atmospheric model reach saturation in about 20 days, suggesting that the predictable range is less than 3 weeks.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-017-2071-3</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-798X |
ispartof | Theoretical and applied climatology, 2018-04, Vol.132 (1-2), p.31-40 |
issn | 0177-798X 1434-4483 |
language | eng |
recordid | cdi_proquest_journals_2016939689 |
source | SpringerLink Journals |
subjects | Air Air-sea interaction Analysis Aquatic Pollution Atmospheric models Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Climate models Climate science Climatology Correlation coefficient Correlation coefficients Dynamic height Earth and Environmental Science Earth Sciences Geopotential Geopotential height Mathematical models Ocean-atmosphere interaction Original Paper Root-mean-square errors Saturation Signal-to-noise ratio Temperature (air-sea) Waste Water Technology Water Management Water Pollution Control Weather forecasting |
title | Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A02%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20air-sea%20interaction%20on%20extended-range%20prediction%20of%20geopotential%20height%20at%20500%C2%A0hPa%20over%20the%20northern%20extratropical%20region&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Wang,%20Xujia&rft.date=2018-04-01&rft.volume=132&rft.issue=1-2&rft.spage=31&rft.epage=40&rft.pages=31-40&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-017-2071-3&rft_dat=%3Cgale_proqu%3EA533217930%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2016939689&rft_id=info:pmid/&rft_galeid=A533217930&rfr_iscdi=true |