Rank‐based inference for the accelerated failure time model

A broad class of rank‐based monotone estimating functions is developed for the semiparametric accelerated failure time model with censored observations. The corresponding estimators can be obtained via linear programming, and are shown to be consistent and asymptotically normal. The limiting covaria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2003-06, Vol.90 (2), p.341-353
Hauptverfasser: Jin, Zhezhen, Lin, D. Y., Wei, L. J., Ying, Zhiliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A broad class of rank‐based monotone estimating functions is developed for the semiparametric accelerated failure time model with censored observations. The corresponding estimators can be obtained via linear programming, and are shown to be consistent and asymptotically normal. The limiting covariance matrices can be estimated by a resampling technique, which does not involve nonparametric density estimation or numerical derivatives. The new estimators represent consistent roots of the non‐monotone estimating equations based on the familiar weighted log‐rank statistics. Simulation studies demonstrate that the proposed methods perform well in practical settings. Two real examples are provided.
ISSN:0006-3444
1464-3510
DOI:10.1093/biomet/90.2.341