On efficient probability forecasting systems
We study the asymptotic behaviour of probability forecasting systems, and discuss their usefulness as inferential tools for statistical problems such as model verification and selection. Our theoretical setting is the prequential, or predictive sequential, framework proposed by Dawid (1984). We stud...
Gespeichert in:
Veröffentlicht in: | Biometrika 1999-12, Vol.86 (4), p.765-784 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 784 |
---|---|
container_issue | 4 |
container_start_page | 765 |
container_title | Biometrika |
container_volume | 86 |
creator | Skouras, K Dawid, AP |
description | We study the asymptotic behaviour of probability forecasting systems, and discuss their usefulness as inferential tools for statistical problems such as model verification and selection. Our theoretical setting is the prequential, or predictive sequential, framework proposed by Dawid (1984). We study especially the notion of prequential efficiency of a forecasting system and present some new results. We focus on plug-in, or estimative, forecasting systems, where the forecast distribution is generated by replacing the unknown parameter with an estimate. |
doi_str_mv | 10.1093/biomet/86.4.765 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201693263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2673584</jstor_id><sourcerecordid>2673584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-67ded67f443f749629b5dd36fa9a4831ddc703637b57f9e2890a69b90913a8de3</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWKtnLx6KeHTbfO0kOYqoFSo9qCBeQnY3kdR2tyYp2P_elC31NAzv994MD6FLgscEKzapfLeyaSJhzMcCyiM0IBx4wUqCj9EAYwwF45yforMYF7sVShig23k7ss752ts2jdahq0zllz5tR64LtjYx-fZrFLcx2VU8RyfOLKO92M8hen98eLufFrP50_P93ayoqYRUgGhsA8JxzpzgCqiqyqZh4IwyXDLSNLXADJioSuGUpVJhA6pSWBFmZGPZEF33ufmfn42NSS-6TWjzSU0xAcUosAxNeqgOXYzBOr0OfmXCVhOsd43ovhEtQXOdG8mOm32sibVZumDa2sd_G83JZIdd9dgipi4cZAqClZJnuehlnzv5PcgmfOtMiFJPPz71iyCvEgPTlP0BxwZ5Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201693263</pqid></control><display><type>article</type><title>On efficient probability forecasting systems</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Skouras, K ; Dawid, AP</creator><creatorcontrib>Skouras, K ; Dawid, AP</creatorcontrib><description>We study the asymptotic behaviour of probability forecasting systems, and discuss their usefulness as inferential tools for statistical problems such as model verification and selection. Our theoretical setting is the prequential, or predictive sequential, framework proposed by Dawid (1984). We study especially the notion of prequential efficiency of a forecasting system and present some new results. We focus on plug-in, or estimative, forecasting systems, where the forecast distribution is generated by replacing the unknown parameter with an estimate.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/86.4.765</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Bayesian forecasting system ; Efficiency ; Efficiency metrics ; estimative predictive distribution ; Estimators ; Exact sciences and technology ; Forecasting ; Forecasting models ; Mathematical foundations ; Mathematics ; Maximum likelihood estimators ; Performance evaluation ; plug-in predictive distribution ; Point forecasts ; predictive inference ; prequential inference ; Probabilities ; Probability and statistics ; Probability forecasts ; Sciences and techniques of general use ; statistical forecasting system ; Statistical forecasts ; Statistical theories ; Statistical variance ; Statistics ; Validity</subject><ispartof>Biometrika, 1999-12, Vol.86 (4), p.765-784</ispartof><rights>Copyright 1999 Biometrika Trust</rights><rights>2000 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Dec 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-67ded67f443f749629b5dd36fa9a4831ddc703637b57f9e2890a69b90913a8de3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2673584$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2673584$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1269315$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Skouras, K</creatorcontrib><creatorcontrib>Dawid, AP</creatorcontrib><title>On efficient probability forecasting systems</title><title>Biometrika</title><addtitle>Biometrika</addtitle><description>We study the asymptotic behaviour of probability forecasting systems, and discuss their usefulness as inferential tools for statistical problems such as model verification and selection. Our theoretical setting is the prequential, or predictive sequential, framework proposed by Dawid (1984). We study especially the notion of prequential efficiency of a forecasting system and present some new results. We focus on plug-in, or estimative, forecasting systems, where the forecast distribution is generated by replacing the unknown parameter with an estimate.</description><subject>Bayesian forecasting system</subject><subject>Efficiency</subject><subject>Efficiency metrics</subject><subject>estimative predictive distribution</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>Forecasting models</subject><subject>Mathematical foundations</subject><subject>Mathematics</subject><subject>Maximum likelihood estimators</subject><subject>Performance evaluation</subject><subject>plug-in predictive distribution</subject><subject>Point forecasts</subject><subject>predictive inference</subject><subject>prequential inference</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>Probability forecasts</subject><subject>Sciences and techniques of general use</subject><subject>statistical forecasting system</subject><subject>Statistical forecasts</subject><subject>Statistical theories</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Validity</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEQxYMoWKtnLx6KeHTbfO0kOYqoFSo9qCBeQnY3kdR2tyYp2P_elC31NAzv994MD6FLgscEKzapfLeyaSJhzMcCyiM0IBx4wUqCj9EAYwwF45yforMYF7sVShig23k7ss752ts2jdahq0zllz5tR64LtjYx-fZrFLcx2VU8RyfOLKO92M8hen98eLufFrP50_P93ayoqYRUgGhsA8JxzpzgCqiqyqZh4IwyXDLSNLXADJioSuGUpVJhA6pSWBFmZGPZEF33ufmfn42NSS-6TWjzSU0xAcUosAxNeqgOXYzBOr0OfmXCVhOsd43ovhEtQXOdG8mOm32sibVZumDa2sd_G83JZIdd9dgipi4cZAqClZJnuehlnzv5PcgmfOtMiFJPPz71iyCvEgPTlP0BxwZ5Sg</recordid><startdate>19991201</startdate><enddate>19991201</enddate><creator>Skouras, K</creator><creator>Dawid, AP</creator><general>Oxford University Press</general><general>Biometrika Trust</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19991201</creationdate><title>On efficient probability forecasting systems</title><author>Skouras, K ; Dawid, AP</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-67ded67f443f749629b5dd36fa9a4831ddc703637b57f9e2890a69b90913a8de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Bayesian forecasting system</topic><topic>Efficiency</topic><topic>Efficiency metrics</topic><topic>estimative predictive distribution</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>Forecasting models</topic><topic>Mathematical foundations</topic><topic>Mathematics</topic><topic>Maximum likelihood estimators</topic><topic>Performance evaluation</topic><topic>plug-in predictive distribution</topic><topic>Point forecasts</topic><topic>predictive inference</topic><topic>prequential inference</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>Probability forecasts</topic><topic>Sciences and techniques of general use</topic><topic>statistical forecasting system</topic><topic>Statistical forecasts</topic><topic>Statistical theories</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skouras, K</creatorcontrib><creatorcontrib>Dawid, AP</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skouras, K</au><au>Dawid, AP</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On efficient probability forecasting systems</atitle><jtitle>Biometrika</jtitle><addtitle>Biometrika</addtitle><date>1999-12-01</date><risdate>1999</risdate><volume>86</volume><issue>4</issue><spage>765</spage><epage>784</epage><pages>765-784</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>We study the asymptotic behaviour of probability forecasting systems, and discuss their usefulness as inferential tools for statistical problems such as model verification and selection. Our theoretical setting is the prequential, or predictive sequential, framework proposed by Dawid (1984). We study especially the notion of prequential efficiency of a forecasting system and present some new results. We focus on plug-in, or estimative, forecasting systems, where the forecast distribution is generated by replacing the unknown parameter with an estimate.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/86.4.765</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 1999-12, Vol.86 (4), p.765-784 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_proquest_journals_201693263 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current) |
subjects | Bayesian forecasting system Efficiency Efficiency metrics estimative predictive distribution Estimators Exact sciences and technology Forecasting Forecasting models Mathematical foundations Mathematics Maximum likelihood estimators Performance evaluation plug-in predictive distribution Point forecasts predictive inference prequential inference Probabilities Probability and statistics Probability forecasts Sciences and techniques of general use statistical forecasting system Statistical forecasts Statistical theories Statistical variance Statistics Validity |
title | On efficient probability forecasting systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20efficient%20probability%20forecasting%20systems&rft.jtitle=Biometrika&rft.au=Skouras,%20K&rft.date=1999-12-01&rft.volume=86&rft.issue=4&rft.spage=765&rft.epage=784&rft.pages=765-784&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/86.4.765&rft_dat=%3Cjstor_proqu%3E2673584%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201693263&rft_id=info:pmid/&rft_jstor_id=2673584&rfr_iscdi=true |