iSAM: Incremental Smoothing and Mapping

In this paper, we present incremental smoothing and mapping (iSAM), which is a novel approach to the simultaneous localization and mapping problem that is based on fast incremental matrix factorization. iSAM provides an efficient and exact solution by updating a QR factorization of the naturally spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2008-12, Vol.24 (6), p.1365-1378
Hauptverfasser: Kaess, M., Ranganathan, A., Dellaert, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1378
container_issue 6
container_start_page 1365
container_title IEEE transactions on robotics
container_volume 24
creator Kaess, M.
Ranganathan, A.
Dellaert, F.
description In this paper, we present incremental smoothing and mapping (iSAM), which is a novel approach to the simultaneous localization and mapping problem that is based on fast incremental matrix factorization. iSAM provides an efficient and exact solution by updating a QR factorization of the naturally sparse smoothing information matrix, thereby recalculating only those matrix entries that actually change. iSAM is efficient even for robot trajectories with many loops as it avoids unnecessary fill-in in the factor matrix by periodic variable reordering. Also, to enable data association in real time, we provide efficient algorithms to access the estimation uncertainties of interest based on the factored information matrix. We systematically evaluate the different components of iSAM as well as the overall algorithm using various simulated and real-world datasets for both landmark and pose-only settings.
doi_str_mv 10.1109/TRO.2008.2006706
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_201601974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4682731</ieee_id><sourcerecordid>1626565311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-69a23402b6c1859ba1df7197a4383cc9887479aedbb954905bc5ef2710bdb98d3</originalsourceid><addsrcrecordid>eNp9kctLAzEQhxdRsFbvgpdF0HrZOnkn3krxUWgp2HoO2WxWV_ZRN9uD_71ZWnrw0EsyMN_8mOGLomsEY4RAPa7fl2MMIPuHC-An0QApihKgXJ6GmjGcEFDyPLrw_hsAUwVkEI2K1WTxFM9q27rK1Z0p41XVNN1XUX_Gps7ihdlsQn0ZneWm9O5q_w-jj5fn9fQtmS9fZ9PJPLEMWJdwZTChgFNukWQqNSjLBVLCUCKJtUpKQYUyLktTxcIGLLXM5VggSLNUyYwMo9Eud9M2P1vnO10V3rqyNLVrtl6HpTmRguFA3h8lCaWMUywD-HAURFwgTLlQKqC3_9DvZtvW4WCNAXEIl9AAwQ6ybeN963K9aYvKtL8age5d6OBC9y703kUYudvnGm9NmbemtoU_zGEUfEjcR9_suMI5d2gHg1gQRP4ACsaOAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201601974</pqid></control><display><type>article</type><title>iSAM: Incremental Smoothing and Mapping</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Kaess, M. ; Ranganathan, A. ; Dellaert, F.</creator><creatorcontrib>Kaess, M. ; Ranganathan, A. ; Dellaert, F.</creatorcontrib><description>In this paper, we present incremental smoothing and mapping (iSAM), which is a novel approach to the simultaneous localization and mapping problem that is based on fast incremental matrix factorization. iSAM provides an efficient and exact solution by updating a QR factorization of the naturally sparse smoothing information matrix, thereby recalculating only those matrix entries that actually change. iSAM is efficient even for robot trajectories with many loops as it avoids unnecessary fill-in in the factor matrix by periodic variable reordering. Also, to enable data association in real time, we provide efficient algorithms to access the estimation uncertainties of interest based on the factored information matrix. We systematically evaluate the different components of iSAM as well as the overall algorithm using various simulated and real-world datasets for both landmark and pose-only settings.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2008.2006706</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Computer science; control theory; systems ; Computer simulation ; Control theory. Systems ; Data association ; Data processing. List processing. Character string processing ; Data smoothing ; Exact sciences and technology ; Exact solutions ; Factorization ; Information filtering ; Large-scale systems ; localization ; Mapping ; Mathematical analysis ; Memory organisation. Data processing ; Mobile robots ; nonlinear estimation ; Robot sensing systems ; Robotics ; Robots ; Simultaneous localization and mapping ; simultaneous localization and mapping (SLAM) ; Smoothing ; Smoothing methods ; Software ; Sparse matrices ; Trajectory ; Uncertainty</subject><ispartof>IEEE transactions on robotics, 2008-12, Vol.24 (6), p.1365-1378</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-69a23402b6c1859ba1df7197a4383cc9887479aedbb954905bc5ef2710bdb98d3</citedby><cites>FETCH-LOGICAL-c505t-69a23402b6c1859ba1df7197a4383cc9887479aedbb954905bc5ef2710bdb98d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4682731$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4682731$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21002824$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaess, M.</creatorcontrib><creatorcontrib>Ranganathan, A.</creatorcontrib><creatorcontrib>Dellaert, F.</creatorcontrib><title>iSAM: Incremental Smoothing and Mapping</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>In this paper, we present incremental smoothing and mapping (iSAM), which is a novel approach to the simultaneous localization and mapping problem that is based on fast incremental matrix factorization. iSAM provides an efficient and exact solution by updating a QR factorization of the naturally sparse smoothing information matrix, thereby recalculating only those matrix entries that actually change. iSAM is efficient even for robot trajectories with many loops as it avoids unnecessary fill-in in the factor matrix by periodic variable reordering. Also, to enable data association in real time, we provide efficient algorithms to access the estimation uncertainties of interest based on the factored information matrix. We systematically evaluate the different components of iSAM as well as the overall algorithm using various simulated and real-world datasets for both landmark and pose-only settings.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Control theory. Systems</subject><subject>Data association</subject><subject>Data processing. List processing. Character string processing</subject><subject>Data smoothing</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Factorization</subject><subject>Information filtering</subject><subject>Large-scale systems</subject><subject>localization</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Memory organisation. Data processing</subject><subject>Mobile robots</subject><subject>nonlinear estimation</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Robots</subject><subject>Simultaneous localization and mapping</subject><subject>simultaneous localization and mapping (SLAM)</subject><subject>Smoothing</subject><subject>Smoothing methods</subject><subject>Software</subject><subject>Sparse matrices</subject><subject>Trajectory</subject><subject>Uncertainty</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kctLAzEQhxdRsFbvgpdF0HrZOnkn3krxUWgp2HoO2WxWV_ZRN9uD_71ZWnrw0EsyMN_8mOGLomsEY4RAPa7fl2MMIPuHC-An0QApihKgXJ6GmjGcEFDyPLrw_hsAUwVkEI2K1WTxFM9q27rK1Z0p41XVNN1XUX_Gps7ihdlsQn0ZneWm9O5q_w-jj5fn9fQtmS9fZ9PJPLEMWJdwZTChgFNukWQqNSjLBVLCUCKJtUpKQYUyLktTxcIGLLXM5VggSLNUyYwMo9Eud9M2P1vnO10V3rqyNLVrtl6HpTmRguFA3h8lCaWMUywD-HAURFwgTLlQKqC3_9DvZtvW4WCNAXEIl9AAwQ6ybeN963K9aYvKtL8age5d6OBC9y703kUYudvnGm9NmbemtoU_zGEUfEjcR9_suMI5d2gHg1gQRP4ACsaOAA</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Kaess, M.</creator><creator>Ranganathan, A.</creator><creator>Dellaert, F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20081201</creationdate><title>iSAM: Incremental Smoothing and Mapping</title><author>Kaess, M. ; Ranganathan, A. ; Dellaert, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-69a23402b6c1859ba1df7197a4383cc9887479aedbb954905bc5ef2710bdb98d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Control theory. Systems</topic><topic>Data association</topic><topic>Data processing. List processing. Character string processing</topic><topic>Data smoothing</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Factorization</topic><topic>Information filtering</topic><topic>Large-scale systems</topic><topic>localization</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Memory organisation. Data processing</topic><topic>Mobile robots</topic><topic>nonlinear estimation</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Robots</topic><topic>Simultaneous localization and mapping</topic><topic>simultaneous localization and mapping (SLAM)</topic><topic>Smoothing</topic><topic>Smoothing methods</topic><topic>Software</topic><topic>Sparse matrices</topic><topic>Trajectory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaess, M.</creatorcontrib><creatorcontrib>Ranganathan, A.</creatorcontrib><creatorcontrib>Dellaert, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaess, M.</au><au>Ranganathan, A.</au><au>Dellaert, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>iSAM: Incremental Smoothing and Mapping</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2008-12-01</date><risdate>2008</risdate><volume>24</volume><issue>6</issue><spage>1365</spage><epage>1378</epage><pages>1365-1378</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>In this paper, we present incremental smoothing and mapping (iSAM), which is a novel approach to the simultaneous localization and mapping problem that is based on fast incremental matrix factorization. iSAM provides an efficient and exact solution by updating a QR factorization of the naturally sparse smoothing information matrix, thereby recalculating only those matrix entries that actually change. iSAM is efficient even for robot trajectories with many loops as it avoids unnecessary fill-in in the factor matrix by periodic variable reordering. Also, to enable data association in real time, we provide efficient algorithms to access the estimation uncertainties of interest based on the factored information matrix. We systematically evaluate the different components of iSAM as well as the overall algorithm using various simulated and real-world datasets for both landmark and pose-only settings.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TRO.2008.2006706</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2008-12, Vol.24 (6), p.1365-1378
issn 1552-3098
1941-0468
language eng
recordid cdi_proquest_journals_201601974
source IEEE/IET Electronic Library (IEL)
subjects Algorithms
Applied sciences
Computer science
control theory
systems
Computer simulation
Control theory. Systems
Data association
Data processing. List processing. Character string processing
Data smoothing
Exact sciences and technology
Exact solutions
Factorization
Information filtering
Large-scale systems
localization
Mapping
Mathematical analysis
Memory organisation. Data processing
Mobile robots
nonlinear estimation
Robot sensing systems
Robotics
Robots
Simultaneous localization and mapping
simultaneous localization and mapping (SLAM)
Smoothing
Smoothing methods
Software
Sparse matrices
Trajectory
Uncertainty
title iSAM: Incremental Smoothing and Mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=iSAM:%20Incremental%20Smoothing%20and%20Mapping&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Kaess,%20M.&rft.date=2008-12-01&rft.volume=24&rft.issue=6&rft.spage=1365&rft.epage=1378&rft.pages=1365-1378&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2008.2006706&rft_dat=%3Cproquest_RIE%3E1626565311%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201601974&rft_id=info:pmid/&rft_ieee_id=4682731&rfr_iscdi=true