Injection-moulded lens form error prediction using cavity pressure and temperature signals based on k-fold cross validation
This article discusses the development of lens form error prediction models using in-process cavity pressure and temperature signals based on a k-fold cross-validation method. In a series of lens injection moulding experiments, the built-in-sensor mould is used, the in-process cavity pressure and te...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture Journal of engineering manufacture, 2018-04, Vol.232 (5), p.928-934 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 934 |
---|---|
container_issue | 5 |
container_start_page | 928 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture |
container_volume | 232 |
creator | Nam, Jung Soo Na, Cho Rok Jo, Hyoung Han Song, Jun Yeob Ha, Tae Ho Lee, Sang Won |
description | This article discusses the development of lens form error prediction models using in-process cavity pressure and temperature signals based on a k-fold cross-validation method. In a series of lens injection moulding experiments, the built-in-sensor mould is used, the in-process cavity pressure and temperature signals are captured and the lens form errors are measured. Then, three features including maximum pressure, holding pressure and maximum temperature are identified from the measured cavity pressure and temperature profiles, and the lens form error prediction models are formulated based on a response surface methodology. In particular, the k-fold cross-validation approach is adopted in order to improve the prediction accuracy. It is demonstrated that the lens form error prediction models can be practically used for diagnosing the quality of injection-moulded lenses in an industrial site. |
doi_str_mv | 10.1177/0954405416654421 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2015680532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954405416654421</sage_id><sourcerecordid>2015680532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-4c598d5118d7e611a918c7bfc71d837b067b36e5277c3644e4daa9edb1c0f5413</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePQY8R5MmadqjLH7Bghc9lzSZLlnbpibtwuI_b7orCIJzyUzm9x7DQ-ia0VvGlLqjpRSCSsHyPDUZO0GLjApGslLJU7SY12Ten6OLGLc0leJ8gb5e-i2Y0fmedH5qLVjcQh9x40OHIQQf8BDAugOCp-j6DTZ658b9_B_jFADr3uIRugGCHuc5uk2v24hrHZNdkn2QxrcWm-BjxDvdOqtnu0t01iQOrn7eJXp_fHhbPZP169PL6n5NDKflSISRZWElY4VVkDOmS1YYVTdGMVtwVdNc1TwHmSlleC4ECKt1CbZmhjYpEL5EN0ffIfjPCeJYbf0U5hOrjDKZF1TyLFH0SB3ODNBUQ3CdDvuK0WqOuPobcZKQoyTqDfya_st_A_1SfSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015680532</pqid></control><display><type>article</type><title>Injection-moulded lens form error prediction using cavity pressure and temperature signals based on k-fold cross validation</title><source>Access via SAGE</source><creator>Nam, Jung Soo ; Na, Cho Rok ; Jo, Hyoung Han ; Song, Jun Yeob ; Ha, Tae Ho ; Lee, Sang Won</creator><creatorcontrib>Nam, Jung Soo ; Na, Cho Rok ; Jo, Hyoung Han ; Song, Jun Yeob ; Ha, Tae Ho ; Lee, Sang Won</creatorcontrib><description>This article discusses the development of lens form error prediction models using in-process cavity pressure and temperature signals based on a k-fold cross-validation method. In a series of lens injection moulding experiments, the built-in-sensor mould is used, the in-process cavity pressure and temperature signals are captured and the lens form errors are measured. Then, three features including maximum pressure, holding pressure and maximum temperature are identified from the measured cavity pressure and temperature profiles, and the lens form error prediction models are formulated based on a response surface methodology. In particular, the k-fold cross-validation approach is adopted in order to improve the prediction accuracy. It is demonstrated that the lens form error prediction models can be practically used for diagnosing the quality of injection-moulded lenses in an industrial site.</description><identifier>ISSN: 0954-4054</identifier><identifier>EISSN: 2041-2975</identifier><identifier>DOI: 10.1177/0954405416654421</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Errors ; Injection molding ; Lenses ; Mathematical models ; Molding (process) ; Molds ; Response surface methodology ; Temperature profiles</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture, 2018-04, Vol.232 (5), p.928-934</ispartof><rights>IMechE 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-4c598d5118d7e611a918c7bfc71d837b067b36e5277c3644e4daa9edb1c0f5413</citedby><cites>FETCH-LOGICAL-c309t-4c598d5118d7e611a918c7bfc71d837b067b36e5277c3644e4daa9edb1c0f5413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954405416654421$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954405416654421$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,781,785,21820,27925,27926,43622,43623</link.rule.ids></links><search><creatorcontrib>Nam, Jung Soo</creatorcontrib><creatorcontrib>Na, Cho Rok</creatorcontrib><creatorcontrib>Jo, Hyoung Han</creatorcontrib><creatorcontrib>Song, Jun Yeob</creatorcontrib><creatorcontrib>Ha, Tae Ho</creatorcontrib><creatorcontrib>Lee, Sang Won</creatorcontrib><title>Injection-moulded lens form error prediction using cavity pressure and temperature signals based on k-fold cross validation</title><title>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture</title><description>This article discusses the development of lens form error prediction models using in-process cavity pressure and temperature signals based on a k-fold cross-validation method. In a series of lens injection moulding experiments, the built-in-sensor mould is used, the in-process cavity pressure and temperature signals are captured and the lens form errors are measured. Then, three features including maximum pressure, holding pressure and maximum temperature are identified from the measured cavity pressure and temperature profiles, and the lens form error prediction models are formulated based on a response surface methodology. In particular, the k-fold cross-validation approach is adopted in order to improve the prediction accuracy. It is demonstrated that the lens form error prediction models can be practically used for diagnosing the quality of injection-moulded lenses in an industrial site.</description><subject>Errors</subject><subject>Injection molding</subject><subject>Lenses</subject><subject>Mathematical models</subject><subject>Molding (process)</subject><subject>Molds</subject><subject>Response surface methodology</subject><subject>Temperature profiles</subject><issn>0954-4054</issn><issn>2041-2975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePQY8R5MmadqjLH7Bghc9lzSZLlnbpibtwuI_b7orCIJzyUzm9x7DQ-ia0VvGlLqjpRSCSsHyPDUZO0GLjApGslLJU7SY12Ten6OLGLc0leJ8gb5e-i2Y0fmedH5qLVjcQh9x40OHIQQf8BDAugOCp-j6DTZ658b9_B_jFADr3uIRugGCHuc5uk2v24hrHZNdkn2QxrcWm-BjxDvdOqtnu0t01iQOrn7eJXp_fHhbPZP169PL6n5NDKflSISRZWElY4VVkDOmS1YYVTdGMVtwVdNc1TwHmSlleC4ECKt1CbZmhjYpEL5EN0ffIfjPCeJYbf0U5hOrjDKZF1TyLFH0SB3ODNBUQ3CdDvuK0WqOuPobcZKQoyTqDfya_st_A_1SfSA</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Nam, Jung Soo</creator><creator>Na, Cho Rok</creator><creator>Jo, Hyoung Han</creator><creator>Song, Jun Yeob</creator><creator>Ha, Tae Ho</creator><creator>Lee, Sang Won</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201804</creationdate><title>Injection-moulded lens form error prediction using cavity pressure and temperature signals based on k-fold cross validation</title><author>Nam, Jung Soo ; Na, Cho Rok ; Jo, Hyoung Han ; Song, Jun Yeob ; Ha, Tae Ho ; Lee, Sang Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-4c598d5118d7e611a918c7bfc71d837b067b36e5277c3644e4daa9edb1c0f5413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Errors</topic><topic>Injection molding</topic><topic>Lenses</topic><topic>Mathematical models</topic><topic>Molding (process)</topic><topic>Molds</topic><topic>Response surface methodology</topic><topic>Temperature profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Jung Soo</creatorcontrib><creatorcontrib>Na, Cho Rok</creatorcontrib><creatorcontrib>Jo, Hyoung Han</creatorcontrib><creatorcontrib>Song, Jun Yeob</creatorcontrib><creatorcontrib>Ha, Tae Ho</creatorcontrib><creatorcontrib>Lee, Sang Won</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nam, Jung Soo</au><au>Na, Cho Rok</au><au>Jo, Hyoung Han</au><au>Song, Jun Yeob</au><au>Ha, Tae Ho</au><au>Lee, Sang Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Injection-moulded lens form error prediction using cavity pressure and temperature signals based on k-fold cross validation</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture</jtitle><date>2018-04</date><risdate>2018</risdate><volume>232</volume><issue>5</issue><spage>928</spage><epage>934</epage><pages>928-934</pages><issn>0954-4054</issn><eissn>2041-2975</eissn><abstract>This article discusses the development of lens form error prediction models using in-process cavity pressure and temperature signals based on a k-fold cross-validation method. In a series of lens injection moulding experiments, the built-in-sensor mould is used, the in-process cavity pressure and temperature signals are captured and the lens form errors are measured. Then, three features including maximum pressure, holding pressure and maximum temperature are identified from the measured cavity pressure and temperature profiles, and the lens form error prediction models are formulated based on a response surface methodology. In particular, the k-fold cross-validation approach is adopted in order to improve the prediction accuracy. It is demonstrated that the lens form error prediction models can be practically used for diagnosing the quality of injection-moulded lenses in an industrial site.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954405416654421</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4054 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture, 2018-04, Vol.232 (5), p.928-934 |
issn | 0954-4054 2041-2975 |
language | eng |
recordid | cdi_proquest_journals_2015680532 |
source | Access via SAGE |
subjects | Errors Injection molding Lenses Mathematical models Molding (process) Molds Response surface methodology Temperature profiles |
title | Injection-moulded lens form error prediction using cavity pressure and temperature signals based on k-fold cross validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Injection-moulded%20lens%20form%20error%20prediction%20using%20cavity%20pressure%20and%20temperature%20signals%20based%20on%20k-fold%20cross%20validation&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20B,%20Journal%20of%20engineering%20manufacture&rft.au=Nam,%20Jung%20Soo&rft.date=2018-04&rft.volume=232&rft.issue=5&rft.spage=928&rft.epage=934&rft.pages=928-934&rft.issn=0954-4054&rft.eissn=2041-2975&rft_id=info:doi/10.1177/0954405416654421&rft_dat=%3Cproquest_cross%3E2015680532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015680532&rft_id=info:pmid/&rft_sage_id=10.1177_0954405416654421&rfr_iscdi=true |