Injection-moulded lens form error prediction using cavity pressure and temperature signals based on k-fold cross validation

This article discusses the development of lens form error prediction models using in-process cavity pressure and temperature signals based on a k-fold cross-validation method. In a series of lens injection moulding experiments, the built-in-sensor mould is used, the in-process cavity pressure and te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture Journal of engineering manufacture, 2018-04, Vol.232 (5), p.928-934
Hauptverfasser: Nam, Jung Soo, Na, Cho Rok, Jo, Hyoung Han, Song, Jun Yeob, Ha, Tae Ho, Lee, Sang Won
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 934
container_issue 5
container_start_page 928
container_title Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture
container_volume 232
creator Nam, Jung Soo
Na, Cho Rok
Jo, Hyoung Han
Song, Jun Yeob
Ha, Tae Ho
Lee, Sang Won
description This article discusses the development of lens form error prediction models using in-process cavity pressure and temperature signals based on a k-fold cross-validation method. In a series of lens injection moulding experiments, the built-in-sensor mould is used, the in-process cavity pressure and temperature signals are captured and the lens form errors are measured. Then, three features including maximum pressure, holding pressure and maximum temperature are identified from the measured cavity pressure and temperature profiles, and the lens form error prediction models are formulated based on a response surface methodology. In particular, the k-fold cross-validation approach is adopted in order to improve the prediction accuracy. It is demonstrated that the lens form error prediction models can be practically used for diagnosing the quality of injection-moulded lenses in an industrial site.
doi_str_mv 10.1177/0954405416654421
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2015680532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954405416654421</sage_id><sourcerecordid>2015680532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-4c598d5118d7e611a918c7bfc71d837b067b36e5277c3644e4daa9edb1c0f5413</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePQY8R5MmadqjLH7Bghc9lzSZLlnbpibtwuI_b7orCIJzyUzm9x7DQ-ia0VvGlLqjpRSCSsHyPDUZO0GLjApGslLJU7SY12Ten6OLGLc0leJ8gb5e-i2Y0fmedH5qLVjcQh9x40OHIQQf8BDAugOCp-j6DTZ658b9_B_jFADr3uIRugGCHuc5uk2v24hrHZNdkn2QxrcWm-BjxDvdOqtnu0t01iQOrn7eJXp_fHhbPZP169PL6n5NDKflSISRZWElY4VVkDOmS1YYVTdGMVtwVdNc1TwHmSlleC4ECKt1CbZmhjYpEL5EN0ffIfjPCeJYbf0U5hOrjDKZF1TyLFH0SB3ODNBUQ3CdDvuK0WqOuPobcZKQoyTqDfya_st_A_1SfSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015680532</pqid></control><display><type>article</type><title>Injection-moulded lens form error prediction using cavity pressure and temperature signals based on k-fold cross validation</title><source>Access via SAGE</source><creator>Nam, Jung Soo ; Na, Cho Rok ; Jo, Hyoung Han ; Song, Jun Yeob ; Ha, Tae Ho ; Lee, Sang Won</creator><creatorcontrib>Nam, Jung Soo ; Na, Cho Rok ; Jo, Hyoung Han ; Song, Jun Yeob ; Ha, Tae Ho ; Lee, Sang Won</creatorcontrib><description>This article discusses the development of lens form error prediction models using in-process cavity pressure and temperature signals based on a k-fold cross-validation method. In a series of lens injection moulding experiments, the built-in-sensor mould is used, the in-process cavity pressure and temperature signals are captured and the lens form errors are measured. Then, three features including maximum pressure, holding pressure and maximum temperature are identified from the measured cavity pressure and temperature profiles, and the lens form error prediction models are formulated based on a response surface methodology. In particular, the k-fold cross-validation approach is adopted in order to improve the prediction accuracy. It is demonstrated that the lens form error prediction models can be practically used for diagnosing the quality of injection-moulded lenses in an industrial site.</description><identifier>ISSN: 0954-4054</identifier><identifier>EISSN: 2041-2975</identifier><identifier>DOI: 10.1177/0954405416654421</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Errors ; Injection molding ; Lenses ; Mathematical models ; Molding (process) ; Molds ; Response surface methodology ; Temperature profiles</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture, 2018-04, Vol.232 (5), p.928-934</ispartof><rights>IMechE 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-4c598d5118d7e611a918c7bfc71d837b067b36e5277c3644e4daa9edb1c0f5413</citedby><cites>FETCH-LOGICAL-c309t-4c598d5118d7e611a918c7bfc71d837b067b36e5277c3644e4daa9edb1c0f5413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954405416654421$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954405416654421$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,781,785,21820,27925,27926,43622,43623</link.rule.ids></links><search><creatorcontrib>Nam, Jung Soo</creatorcontrib><creatorcontrib>Na, Cho Rok</creatorcontrib><creatorcontrib>Jo, Hyoung Han</creatorcontrib><creatorcontrib>Song, Jun Yeob</creatorcontrib><creatorcontrib>Ha, Tae Ho</creatorcontrib><creatorcontrib>Lee, Sang Won</creatorcontrib><title>Injection-moulded lens form error prediction using cavity pressure and temperature signals based on k-fold cross validation</title><title>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture</title><description>This article discusses the development of lens form error prediction models using in-process cavity pressure and temperature signals based on a k-fold cross-validation method. In a series of lens injection moulding experiments, the built-in-sensor mould is used, the in-process cavity pressure and temperature signals are captured and the lens form errors are measured. Then, three features including maximum pressure, holding pressure and maximum temperature are identified from the measured cavity pressure and temperature profiles, and the lens form error prediction models are formulated based on a response surface methodology. In particular, the k-fold cross-validation approach is adopted in order to improve the prediction accuracy. It is demonstrated that the lens form error prediction models can be practically used for diagnosing the quality of injection-moulded lenses in an industrial site.</description><subject>Errors</subject><subject>Injection molding</subject><subject>Lenses</subject><subject>Mathematical models</subject><subject>Molding (process)</subject><subject>Molds</subject><subject>Response surface methodology</subject><subject>Temperature profiles</subject><issn>0954-4054</issn><issn>2041-2975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePQY8R5MmadqjLH7Bghc9lzSZLlnbpibtwuI_b7orCIJzyUzm9x7DQ-ia0VvGlLqjpRSCSsHyPDUZO0GLjApGslLJU7SY12Ten6OLGLc0leJ8gb5e-i2Y0fmedH5qLVjcQh9x40OHIQQf8BDAugOCp-j6DTZ658b9_B_jFADr3uIRugGCHuc5uk2v24hrHZNdkn2QxrcWm-BjxDvdOqtnu0t01iQOrn7eJXp_fHhbPZP169PL6n5NDKflSISRZWElY4VVkDOmS1YYVTdGMVtwVdNc1TwHmSlleC4ECKt1CbZmhjYpEL5EN0ffIfjPCeJYbf0U5hOrjDKZF1TyLFH0SB3ODNBUQ3CdDvuK0WqOuPobcZKQoyTqDfya_st_A_1SfSA</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Nam, Jung Soo</creator><creator>Na, Cho Rok</creator><creator>Jo, Hyoung Han</creator><creator>Song, Jun Yeob</creator><creator>Ha, Tae Ho</creator><creator>Lee, Sang Won</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201804</creationdate><title>Injection-moulded lens form error prediction using cavity pressure and temperature signals based on k-fold cross validation</title><author>Nam, Jung Soo ; Na, Cho Rok ; Jo, Hyoung Han ; Song, Jun Yeob ; Ha, Tae Ho ; Lee, Sang Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-4c598d5118d7e611a918c7bfc71d837b067b36e5277c3644e4daa9edb1c0f5413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Errors</topic><topic>Injection molding</topic><topic>Lenses</topic><topic>Mathematical models</topic><topic>Molding (process)</topic><topic>Molds</topic><topic>Response surface methodology</topic><topic>Temperature profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Jung Soo</creatorcontrib><creatorcontrib>Na, Cho Rok</creatorcontrib><creatorcontrib>Jo, Hyoung Han</creatorcontrib><creatorcontrib>Song, Jun Yeob</creatorcontrib><creatorcontrib>Ha, Tae Ho</creatorcontrib><creatorcontrib>Lee, Sang Won</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nam, Jung Soo</au><au>Na, Cho Rok</au><au>Jo, Hyoung Han</au><au>Song, Jun Yeob</au><au>Ha, Tae Ho</au><au>Lee, Sang Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Injection-moulded lens form error prediction using cavity pressure and temperature signals based on k-fold cross validation</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture</jtitle><date>2018-04</date><risdate>2018</risdate><volume>232</volume><issue>5</issue><spage>928</spage><epage>934</epage><pages>928-934</pages><issn>0954-4054</issn><eissn>2041-2975</eissn><abstract>This article discusses the development of lens form error prediction models using in-process cavity pressure and temperature signals based on a k-fold cross-validation method. In a series of lens injection moulding experiments, the built-in-sensor mould is used, the in-process cavity pressure and temperature signals are captured and the lens form errors are measured. Then, three features including maximum pressure, holding pressure and maximum temperature are identified from the measured cavity pressure and temperature profiles, and the lens form error prediction models are formulated based on a response surface methodology. In particular, the k-fold cross-validation approach is adopted in order to improve the prediction accuracy. It is demonstrated that the lens form error prediction models can be practically used for diagnosing the quality of injection-moulded lenses in an industrial site.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954405416654421</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-4054
ispartof Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture, 2018-04, Vol.232 (5), p.928-934
issn 0954-4054
2041-2975
language eng
recordid cdi_proquest_journals_2015680532
source Access via SAGE
subjects Errors
Injection molding
Lenses
Mathematical models
Molding (process)
Molds
Response surface methodology
Temperature profiles
title Injection-moulded lens form error prediction using cavity pressure and temperature signals based on k-fold cross validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Injection-moulded%20lens%20form%20error%20prediction%20using%20cavity%20pressure%20and%20temperature%20signals%20based%20on%20k-fold%20cross%20validation&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20B,%20Journal%20of%20engineering%20manufacture&rft.au=Nam,%20Jung%20Soo&rft.date=2018-04&rft.volume=232&rft.issue=5&rft.spage=928&rft.epage=934&rft.pages=928-934&rft.issn=0954-4054&rft.eissn=2041-2975&rft_id=info:doi/10.1177/0954405416654421&rft_dat=%3Cproquest_cross%3E2015680532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015680532&rft_id=info:pmid/&rft_sage_id=10.1177_0954405416654421&rfr_iscdi=true