Comparative differences in the behavior of TiO2 and SiO2 food additives in food ingredient solutions

Nanotechnology is widely used in the food industry to improve the color, taste, and texture of food products. However, concerns regarding potential undesirable health effects remain. It is expected that interaction of engineered nanomaterials (ENMs) with food ingredients will influence their behavio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2018-03, Vol.20 (3), p.1-13, Article 76
Hauptverfasser: Yusoff, Ridhwan, Nguyen, Luong T. H., Chiew, Paul, Wang, Zheng Ming, Ng, Kee Woei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 3
container_start_page 1
container_title Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology
container_volume 20
creator Yusoff, Ridhwan
Nguyen, Luong T. H.
Chiew, Paul
Wang, Zheng Ming
Ng, Kee Woei
description Nanotechnology is widely used in the food industry to improve the color, taste, and texture of food products. However, concerns regarding potential undesirable health effects remain. It is expected that interaction of engineered nanomaterials (ENMs) with food ingredients will influence their behavior and the resulting corona. Nonetheless, there are limited systematic studies conducted to clarify this understanding to date. Herein, we investigated the behavior and corona formation of food grade titanium dioxide (TiO 2 ) and silicon dioxide (SiO 2 ) in solutions of model food ingredients including bovine serum albumin (BSA) and sucrose. Measurements using dynamic light scattering (DLS) showed that both TiO 2 and SiO 2 nanoparticles displayed a decrease in agglomerate sizes in the presence of both food ingredients. Both particles were negatively charged in all the conditions tested. Corona adsorption studies were carried out using multiple complementary methods including Fourier transform infrared (FTIR) spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS), transmission electron microscopy (TEM), micro bicinchoninic acid (BCA) protein assay, and thermogravimetric analysis (TGA). Comparative investigation showed that sucrose could disperse both particles more effectively than BSA and that SiO 2 displayed greater adsorption capacity for both BSA and sucrose, compared to TiO 2 . Taken collectively, this study demonstrated the importance of considering food ingredient effects when mapping the behavior of ENMs in food products. Such understanding could be significant in the evaluation of biological effects, such as toxicity, of ENMs used in food products.
doi_str_mv 10.1007/s11051-018-4176-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2015656553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2015656553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5d81982be79271a1b8c94aff9492e4178a674b38c2de084e194d9a59806ca01f3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczST_UqOUvyCQg9W8Baym6RNaZOabAv-e7NdwZPMYYbhfd9hHoRugd4Dpc1DAqAVEAqclNDUhJ-hCVQNI1zUn-d5LjgntKnLS3SV0oZSqJlgE6RnYbdXUfXuaLB21ppofGcSdh73a4Nbs1ZHFyIOFi_dgmHlNX4fBhuCxkprN1hP-tPG-VU02hnf4xS2h94Fn67RhVXbZG5--xR9PD8tZ69kvnh5mz3OSVdUoieV5iA4a00jWAMKWt6JUlkrSsFM_oqruinbgndMG8pLA6LUQlWC07pTFGwxRXdj7j6Gr4NJvdyEQ_T5pGQUqjpXVWQVjKouhpSisXIf3U7FbwlUDjDlCFNmmHKAKXn2sNGTstavTPxL_t_0A8Ifdsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015656553</pqid></control><display><type>article</type><title>Comparative differences in the behavior of TiO2 and SiO2 food additives in food ingredient solutions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yusoff, Ridhwan ; Nguyen, Luong T. H. ; Chiew, Paul ; Wang, Zheng Ming ; Ng, Kee Woei</creator><creatorcontrib>Yusoff, Ridhwan ; Nguyen, Luong T. H. ; Chiew, Paul ; Wang, Zheng Ming ; Ng, Kee Woei</creatorcontrib><description>Nanotechnology is widely used in the food industry to improve the color, taste, and texture of food products. However, concerns regarding potential undesirable health effects remain. It is expected that interaction of engineered nanomaterials (ENMs) with food ingredients will influence their behavior and the resulting corona. Nonetheless, there are limited systematic studies conducted to clarify this understanding to date. Herein, we investigated the behavior and corona formation of food grade titanium dioxide (TiO 2 ) and silicon dioxide (SiO 2 ) in solutions of model food ingredients including bovine serum albumin (BSA) and sucrose. Measurements using dynamic light scattering (DLS) showed that both TiO 2 and SiO 2 nanoparticles displayed a decrease in agglomerate sizes in the presence of both food ingredients. Both particles were negatively charged in all the conditions tested. Corona adsorption studies were carried out using multiple complementary methods including Fourier transform infrared (FTIR) spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS), transmission electron microscopy (TEM), micro bicinchoninic acid (BCA) protein assay, and thermogravimetric analysis (TGA). Comparative investigation showed that sucrose could disperse both particles more effectively than BSA and that SiO 2 displayed greater adsorption capacity for both BSA and sucrose, compared to TiO 2 . Taken collectively, this study demonstrated the importance of considering food ingredient effects when mapping the behavior of ENMs in food products. Such understanding could be significant in the evaluation of biological effects, such as toxicity, of ENMs used in food products.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-018-4176-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adsorption ; Biocompatibility ; Biological effects ; Bovine serum albumin ; Characterization and Evaluation of Materials ; Charged particles ; Chemistry and Materials Science ; Desorption ; Electron microscopy ; Food additives ; Food industry ; Food processing industry ; Fourier transforms ; Infrared lasers ; Ingredients ; Inorganic Chemistry ; Ionization ; Ions ; Lasers ; Light scattering ; Mass spectrometry ; Mass spectroscopy ; Materials Science ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Optical Devices ; Optics ; Photon correlation spectroscopy ; Photonics ; Physical Chemistry ; Research Paper ; Serum albumin ; Silicon dioxide ; Sucrose ; Sugar ; Surgical implants ; Thermogravimetric analysis ; Titanium dioxide ; Toxicity ; Transmission electron microscopy</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2018-03, Vol.20 (3), p.1-13, Article 76</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2018</rights><rights>Journal of Nanoparticle Research is a copyright of Springer, (2018). All Rights Reserved.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5d81982be79271a1b8c94aff9492e4178a674b38c2de084e194d9a59806ca01f3</citedby><cites>FETCH-LOGICAL-c359t-5d81982be79271a1b8c94aff9492e4178a674b38c2de084e194d9a59806ca01f3</cites><orcidid>0000-0002-7276-3563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-018-4176-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-018-4176-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Yusoff, Ridhwan</creatorcontrib><creatorcontrib>Nguyen, Luong T. H.</creatorcontrib><creatorcontrib>Chiew, Paul</creatorcontrib><creatorcontrib>Wang, Zheng Ming</creatorcontrib><creatorcontrib>Ng, Kee Woei</creatorcontrib><title>Comparative differences in the behavior of TiO2 and SiO2 food additives in food ingredient solutions</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>Nanotechnology is widely used in the food industry to improve the color, taste, and texture of food products. However, concerns regarding potential undesirable health effects remain. It is expected that interaction of engineered nanomaterials (ENMs) with food ingredients will influence their behavior and the resulting corona. Nonetheless, there are limited systematic studies conducted to clarify this understanding to date. Herein, we investigated the behavior and corona formation of food grade titanium dioxide (TiO 2 ) and silicon dioxide (SiO 2 ) in solutions of model food ingredients including bovine serum albumin (BSA) and sucrose. Measurements using dynamic light scattering (DLS) showed that both TiO 2 and SiO 2 nanoparticles displayed a decrease in agglomerate sizes in the presence of both food ingredients. Both particles were negatively charged in all the conditions tested. Corona adsorption studies were carried out using multiple complementary methods including Fourier transform infrared (FTIR) spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS), transmission electron microscopy (TEM), micro bicinchoninic acid (BCA) protein assay, and thermogravimetric analysis (TGA). Comparative investigation showed that sucrose could disperse both particles more effectively than BSA and that SiO 2 displayed greater adsorption capacity for both BSA and sucrose, compared to TiO 2 . Taken collectively, this study demonstrated the importance of considering food ingredient effects when mapping the behavior of ENMs in food products. Such understanding could be significant in the evaluation of biological effects, such as toxicity, of ENMs used in food products.</description><subject>Adsorption</subject><subject>Biocompatibility</subject><subject>Biological effects</subject><subject>Bovine serum albumin</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charged particles</subject><subject>Chemistry and Materials Science</subject><subject>Desorption</subject><subject>Electron microscopy</subject><subject>Food additives</subject><subject>Food industry</subject><subject>Food processing industry</subject><subject>Fourier transforms</subject><subject>Infrared lasers</subject><subject>Ingredients</subject><subject>Inorganic Chemistry</subject><subject>Ionization</subject><subject>Ions</subject><subject>Lasers</subject><subject>Light scattering</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photon correlation spectroscopy</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Research Paper</subject><subject>Serum albumin</subject><subject>Silicon dioxide</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Surgical implants</subject><subject>Thermogravimetric analysis</subject><subject>Titanium dioxide</subject><subject>Toxicity</subject><subject>Transmission electron microscopy</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczST_UqOUvyCQg9W8Baym6RNaZOabAv-e7NdwZPMYYbhfd9hHoRugd4Dpc1DAqAVEAqclNDUhJ-hCVQNI1zUn-d5LjgntKnLS3SV0oZSqJlgE6RnYbdXUfXuaLB21ppofGcSdh73a4Nbs1ZHFyIOFi_dgmHlNX4fBhuCxkprN1hP-tPG-VU02hnf4xS2h94Fn67RhVXbZG5--xR9PD8tZ69kvnh5mz3OSVdUoieV5iA4a00jWAMKWt6JUlkrSsFM_oqruinbgndMG8pLA6LUQlWC07pTFGwxRXdj7j6Gr4NJvdyEQ_T5pGQUqjpXVWQVjKouhpSisXIf3U7FbwlUDjDlCFNmmHKAKXn2sNGTstavTPxL_t_0A8Ifdsw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Yusoff, Ridhwan</creator><creator>Nguyen, Luong T. H.</creator><creator>Chiew, Paul</creator><creator>Wang, Zheng Ming</creator><creator>Ng, Kee Woei</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7276-3563</orcidid></search><sort><creationdate>20180301</creationdate><title>Comparative differences in the behavior of TiO2 and SiO2 food additives in food ingredient solutions</title><author>Yusoff, Ridhwan ; Nguyen, Luong T. H. ; Chiew, Paul ; Wang, Zheng Ming ; Ng, Kee Woei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5d81982be79271a1b8c94aff9492e4178a674b38c2de084e194d9a59806ca01f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adsorption</topic><topic>Biocompatibility</topic><topic>Biological effects</topic><topic>Bovine serum albumin</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charged particles</topic><topic>Chemistry and Materials Science</topic><topic>Desorption</topic><topic>Electron microscopy</topic><topic>Food additives</topic><topic>Food industry</topic><topic>Food processing industry</topic><topic>Fourier transforms</topic><topic>Infrared lasers</topic><topic>Ingredients</topic><topic>Inorganic Chemistry</topic><topic>Ionization</topic><topic>Ions</topic><topic>Lasers</topic><topic>Light scattering</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photon correlation spectroscopy</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Research Paper</topic><topic>Serum albumin</topic><topic>Silicon dioxide</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Surgical implants</topic><topic>Thermogravimetric analysis</topic><topic>Titanium dioxide</topic><topic>Toxicity</topic><topic>Transmission electron microscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Yusoff, Ridhwan</creatorcontrib><creatorcontrib>Nguyen, Luong T. H.</creatorcontrib><creatorcontrib>Chiew, Paul</creatorcontrib><creatorcontrib>Wang, Zheng Ming</creatorcontrib><creatorcontrib>Ng, Kee Woei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yusoff, Ridhwan</au><au>Nguyen, Luong T. H.</au><au>Chiew, Paul</au><au>Wang, Zheng Ming</au><au>Ng, Kee Woei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative differences in the behavior of TiO2 and SiO2 food additives in food ingredient solutions</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>20</volume><issue>3</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>76</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>Nanotechnology is widely used in the food industry to improve the color, taste, and texture of food products. However, concerns regarding potential undesirable health effects remain. It is expected that interaction of engineered nanomaterials (ENMs) with food ingredients will influence their behavior and the resulting corona. Nonetheless, there are limited systematic studies conducted to clarify this understanding to date. Herein, we investigated the behavior and corona formation of food grade titanium dioxide (TiO 2 ) and silicon dioxide (SiO 2 ) in solutions of model food ingredients including bovine serum albumin (BSA) and sucrose. Measurements using dynamic light scattering (DLS) showed that both TiO 2 and SiO 2 nanoparticles displayed a decrease in agglomerate sizes in the presence of both food ingredients. Both particles were negatively charged in all the conditions tested. Corona adsorption studies were carried out using multiple complementary methods including Fourier transform infrared (FTIR) spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS), transmission electron microscopy (TEM), micro bicinchoninic acid (BCA) protein assay, and thermogravimetric analysis (TGA). Comparative investigation showed that sucrose could disperse both particles more effectively than BSA and that SiO 2 displayed greater adsorption capacity for both BSA and sucrose, compared to TiO 2 . Taken collectively, this study demonstrated the importance of considering food ingredient effects when mapping the behavior of ENMs in food products. Such understanding could be significant in the evaluation of biological effects, such as toxicity, of ENMs used in food products.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-018-4176-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7276-3563</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1388-0764
ispartof Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2018-03, Vol.20 (3), p.1-13, Article 76
issn 1388-0764
1572-896X
language eng
recordid cdi_proquest_journals_2015656553
source SpringerLink Journals - AutoHoldings
subjects Adsorption
Biocompatibility
Biological effects
Bovine serum albumin
Characterization and Evaluation of Materials
Charged particles
Chemistry and Materials Science
Desorption
Electron microscopy
Food additives
Food industry
Food processing industry
Fourier transforms
Infrared lasers
Ingredients
Inorganic Chemistry
Ionization
Ions
Lasers
Light scattering
Mass spectrometry
Mass spectroscopy
Materials Science
Nanomaterials
Nanoparticles
Nanotechnology
Optical Devices
Optics
Photon correlation spectroscopy
Photonics
Physical Chemistry
Research Paper
Serum albumin
Silicon dioxide
Sucrose
Sugar
Surgical implants
Thermogravimetric analysis
Titanium dioxide
Toxicity
Transmission electron microscopy
title Comparative differences in the behavior of TiO2 and SiO2 food additives in food ingredient solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20differences%20in%20the%20behavior%20of%20TiO2%20and%20SiO2%20food%20additives%20in%20food%20ingredient%20solutions&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Yusoff,%20Ridhwan&rft.date=2018-03-01&rft.volume=20&rft.issue=3&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=76&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-018-4176-8&rft_dat=%3Cproquest_cross%3E2015656553%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015656553&rft_id=info:pmid/&rfr_iscdi=true