A finite-volume discretization for deformation of fractured media

Simulating the deformation of fractured media requires the coupling of different models for the deformation of fractures and the formation surrounding them. We consider a cell-centered finite-volume approach, termed the multi-point stress approximation (MPSA) method, which is developed in order to d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational geosciences 2018-08, Vol.22 (4), p.993-1007
Hauptverfasser: Ucar, Eren, Keilegavlen, Eirik, Berre, Inga, Nordbotten, Jan Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1007
container_issue 4
container_start_page 993
container_title Computational geosciences
container_volume 22
creator Ucar, Eren
Keilegavlen, Eirik
Berre, Inga
Nordbotten, Jan Martin
description Simulating the deformation of fractured media requires the coupling of different models for the deformation of fractures and the formation surrounding them. We consider a cell-centered finite-volume approach, termed the multi-point stress approximation (MPSA) method, which is developed in order to discretize coupled flow and mechanical deformation in the subsurface. Within the MPSA framework, we consider fractures as co-dimension one inclusions in the domain, with the fracture surfaces represented as line pairs in 2D (face pairs in 3D) that displace relative to each other. Fracture deformation is coupled to that of the surrounding domain through internal boundary conditions. This approach is natural within the finite-volume framework, where tractions are defined on surfaces of the grid. The MPSA method is capable of modeling deformation, considering open and closed fractures with complex and nonlinear relationships governing the displacements and tractions at the fracture surfaces. We validate our proposed approach using both problems, for which analytical solutions are available, and more complex benchmark problems, including comparison with a finite-element discretization.
doi_str_mv 10.1007/s10596-018-9734-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2015634381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2015634381</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-e99de3a467e101d4286e40beb38260c62c46063d5cad3bd28cb85c7e903ee1403</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz9FJk6bJsSx-wYIXPYc0mUqXbbMmraC_3iwVPHmZD3jeGXgIuWZwywDqu8Sg0pICU1TXXFB1QlasqjllQuvTPIsSaEbqc3KR0g4AMsZWpGmKrh_7Celn2M8DFr5PLuLUf9upD2PRhVh4zHVY9tAVXbRumiP6YkDf20ty1tl9wqvfviZvD_evmye6fXl83jRbajnXE0WtPXIrZI0MmBelkiigxZarUoKTpRMSJPeVs563vlSuVZWrUQNHZAL4mtwsdw8xfMyYJrMLcxzzS1MCqyQXXLFMsYVyMaQUsTOH2A82fhkG5mjKLKZMNmWOpozKmXLJpMyO7xj_Lv8f-gGdnGsz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015634381</pqid></control><display><type>article</type><title>A finite-volume discretization for deformation of fractured media</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ucar, Eren ; Keilegavlen, Eirik ; Berre, Inga ; Nordbotten, Jan Martin</creator><creatorcontrib>Ucar, Eren ; Keilegavlen, Eirik ; Berre, Inga ; Nordbotten, Jan Martin</creatorcontrib><description>Simulating the deformation of fractured media requires the coupling of different models for the deformation of fractures and the formation surrounding them. We consider a cell-centered finite-volume approach, termed the multi-point stress approximation (MPSA) method, which is developed in order to discretize coupled flow and mechanical deformation in the subsurface. Within the MPSA framework, we consider fractures as co-dimension one inclusions in the domain, with the fracture surfaces represented as line pairs in 2D (face pairs in 3D) that displace relative to each other. Fracture deformation is coupled to that of the surrounding domain through internal boundary conditions. This approach is natural within the finite-volume framework, where tractions are defined on surfaces of the grid. The MPSA method is capable of modeling deformation, considering open and closed fractures with complex and nonlinear relationships governing the displacements and tractions at the fracture surfaces. We validate our proposed approach using both problems, for which analytical solutions are available, and more complex benchmark problems, including comparison with a finite-element discretization.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-018-9734-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Approximation ; Boundary conditions ; Computer simulation ; Deformation ; Discretization ; Earth and Environmental Science ; Earth Sciences ; Finite element method ; Fracture surfaces ; Fractures ; Frameworks ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Modelling ; Original Paper ; Soil Science &amp; Conservation</subject><ispartof>Computational geosciences, 2018-08, Vol.22 (4), p.993-1007</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Computational Geosciences is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-e99de3a467e101d4286e40beb38260c62c46063d5cad3bd28cb85c7e903ee1403</citedby><cites>FETCH-LOGICAL-a339t-e99de3a467e101d4286e40beb38260c62c46063d5cad3bd28cb85c7e903ee1403</cites><orcidid>0000-0002-4225-1911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10596-018-9734-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10596-018-9734-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ucar, Eren</creatorcontrib><creatorcontrib>Keilegavlen, Eirik</creatorcontrib><creatorcontrib>Berre, Inga</creatorcontrib><creatorcontrib>Nordbotten, Jan Martin</creatorcontrib><title>A finite-volume discretization for deformation of fractured media</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>Simulating the deformation of fractured media requires the coupling of different models for the deformation of fractures and the formation surrounding them. We consider a cell-centered finite-volume approach, termed the multi-point stress approximation (MPSA) method, which is developed in order to discretize coupled flow and mechanical deformation in the subsurface. Within the MPSA framework, we consider fractures as co-dimension one inclusions in the domain, with the fracture surfaces represented as line pairs in 2D (face pairs in 3D) that displace relative to each other. Fracture deformation is coupled to that of the surrounding domain through internal boundary conditions. This approach is natural within the finite-volume framework, where tractions are defined on surfaces of the grid. The MPSA method is capable of modeling deformation, considering open and closed fractures with complex and nonlinear relationships governing the displacements and tractions at the fracture surfaces. We validate our proposed approach using both problems, for which analytical solutions are available, and more complex benchmark problems, including comparison with a finite-element discretization.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Deformation</subject><subject>Discretization</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Finite element method</subject><subject>Fracture surfaces</subject><subject>Fractures</subject><subject>Frameworks</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Original Paper</subject><subject>Soil Science &amp; Conservation</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz9FJk6bJsSx-wYIXPYc0mUqXbbMmraC_3iwVPHmZD3jeGXgIuWZwywDqu8Sg0pICU1TXXFB1QlasqjllQuvTPIsSaEbqc3KR0g4AMsZWpGmKrh_7Celn2M8DFr5PLuLUf9upD2PRhVh4zHVY9tAVXbRumiP6YkDf20ty1tl9wqvfviZvD_evmye6fXl83jRbajnXE0WtPXIrZI0MmBelkiigxZarUoKTpRMSJPeVs563vlSuVZWrUQNHZAL4mtwsdw8xfMyYJrMLcxzzS1MCqyQXXLFMsYVyMaQUsTOH2A82fhkG5mjKLKZMNmWOpozKmXLJpMyO7xj_Lv8f-gGdnGsz</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Ucar, Eren</creator><creator>Keilegavlen, Eirik</creator><creator>Berre, Inga</creator><creator>Nordbotten, Jan Martin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4225-1911</orcidid></search><sort><creationdate>20180801</creationdate><title>A finite-volume discretization for deformation of fractured media</title><author>Ucar, Eren ; Keilegavlen, Eirik ; Berre, Inga ; Nordbotten, Jan Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-e99de3a467e101d4286e40beb38260c62c46063d5cad3bd28cb85c7e903ee1403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Deformation</topic><topic>Discretization</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Finite element method</topic><topic>Fracture surfaces</topic><topic>Fractures</topic><topic>Frameworks</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Original Paper</topic><topic>Soil Science &amp; Conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ucar, Eren</creatorcontrib><creatorcontrib>Keilegavlen, Eirik</creatorcontrib><creatorcontrib>Berre, Inga</creatorcontrib><creatorcontrib>Nordbotten, Jan Martin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ucar, Eren</au><au>Keilegavlen, Eirik</au><au>Berre, Inga</au><au>Nordbotten, Jan Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite-volume discretization for deformation of fractured media</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>22</volume><issue>4</issue><spage>993</spage><epage>1007</epage><pages>993-1007</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>Simulating the deformation of fractured media requires the coupling of different models for the deformation of fractures and the formation surrounding them. We consider a cell-centered finite-volume approach, termed the multi-point stress approximation (MPSA) method, which is developed in order to discretize coupled flow and mechanical deformation in the subsurface. Within the MPSA framework, we consider fractures as co-dimension one inclusions in the domain, with the fracture surfaces represented as line pairs in 2D (face pairs in 3D) that displace relative to each other. Fracture deformation is coupled to that of the surrounding domain through internal boundary conditions. This approach is natural within the finite-volume framework, where tractions are defined on surfaces of the grid. The MPSA method is capable of modeling deformation, considering open and closed fractures with complex and nonlinear relationships governing the displacements and tractions at the fracture surfaces. We validate our proposed approach using both problems, for which analytical solutions are available, and more complex benchmark problems, including comparison with a finite-element discretization.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10596-018-9734-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4225-1911</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1420-0597
ispartof Computational geosciences, 2018-08, Vol.22 (4), p.993-1007
issn 1420-0597
1573-1499
language eng
recordid cdi_proquest_journals_2015634381
source SpringerLink Journals - AutoHoldings
subjects Approximation
Boundary conditions
Computer simulation
Deformation
Discretization
Earth and Environmental Science
Earth Sciences
Finite element method
Fracture surfaces
Fractures
Frameworks
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Mathematical Modeling and Industrial Mathematics
Mathematical models
Modelling
Original Paper
Soil Science & Conservation
title A finite-volume discretization for deformation of fractured media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite-volume%20discretization%20for%20deformation%20of%20fractured%20media&rft.jtitle=Computational%20geosciences&rft.au=Ucar,%20Eren&rft.date=2018-08-01&rft.volume=22&rft.issue=4&rft.spage=993&rft.epage=1007&rft.pages=993-1007&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-018-9734-8&rft_dat=%3Cproquest_cross%3E2015634381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015634381&rft_id=info:pmid/&rfr_iscdi=true