Making a state-of-the-art heuristic faster with data mining

Hybrid metaheuristics—developed based on the combination of metaheuristics with concepts and techniques from other research areas—represent an important subject in combinatorial optimization research. Data mining techniques have been coupled with metaheuristics in order to obtain patterns of subopti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2018-04, Vol.263 (1-2), p.141-162
Hauptverfasser: Martins, Daniel, Vianna, Gabriel M., Rosseti, Isabel, Martins, Simone L., Plastino, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue 1-2
container_start_page 141
container_title Annals of operations research
container_volume 263
creator Martins, Daniel
Vianna, Gabriel M.
Rosseti, Isabel
Martins, Simone L.
Plastino, Alexandre
description Hybrid metaheuristics—developed based on the combination of metaheuristics with concepts and techniques from other research areas—represent an important subject in combinatorial optimization research. Data mining techniques have been coupled with metaheuristics in order to obtain patterns of suboptimal solutions, which are used to guide the search for better-cost solutions. In this paper, we incorporate a data mining procedure into a state-of-the-art heuristic for a specific problem in order to give evidences that, when a technique is able to reach an optimal solution, or a near-optimal solution with little chance of improvements, the mined patterns could be used to guide the search for the optimal or near optimal solution in less computational time. We developed a data mining hybrid version of a previously proposed and state-of-the-art multistart heuristic for the classical p -median problem. Computational experiments, conducted on a set of instances from the literature, showed that the new version of the heuristic was able to reach optimal and near-optimal solutions, on average, 27.32 % faster than the original strategy.
doi_str_mv 10.1007/s10479-014-1693-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2015616469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A531094313</galeid><sourcerecordid>A531094313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-dab70cd3e7af53fefec3242c1ee5d94981c42ead7e9a2bd7d966ad59b7e01e2b3</originalsourceid><addsrcrecordid>eNp1kV1rFTEQhoNY8Fj9Ad4teGtqPndP8KoUtUKlN_Y6zCaTPak9uzWTRfz3TTliW7AMZCA8T8LLy9g7KU6kEMNHksIMjgtpuOyd5uYF20g7KO603r5kG6Gs4VZr8Yq9JroWQki5tRv26Tv8zPPUQUcVKvIl8bpDDqV2O1xLpppDl4Aqlu53rrsuQoVun-cmvWFHCW4I3_7dx-zqy-cfZ-f84vLrt7PTCx6MEpVHGAcRosYBktUJEwatjAoS0UZn3FY2DiEO6ECNcYiu7yFaNw4oJKpRH7P3h3dvy_JrRar-elnL3L70Skjby960yP-oCW7Q5zkttUDYZwr-1GopnNFSN-rkP1SbiPsclhlTbvdPhA-PhHGlPCO1g_K0qzTBSvQUlwc8lIWoYPK3Je-h_PFS-Pum_KEp35ry90150xx1cKix84TlId_z0h1HT5QV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015616469</pqid></control><display><type>article</type><title>Making a state-of-the-art heuristic faster with data mining</title><source>Business Source Complete</source><source>SpringerNature Journals</source><creator>Martins, Daniel ; Vianna, Gabriel M. ; Rosseti, Isabel ; Martins, Simone L. ; Plastino, Alexandre</creator><creatorcontrib>Martins, Daniel ; Vianna, Gabriel M. ; Rosseti, Isabel ; Martins, Simone L. ; Plastino, Alexandre</creatorcontrib><description>Hybrid metaheuristics—developed based on the combination of metaheuristics with concepts and techniques from other research areas—represent an important subject in combinatorial optimization research. Data mining techniques have been coupled with metaheuristics in order to obtain patterns of suboptimal solutions, which are used to guide the search for better-cost solutions. In this paper, we incorporate a data mining procedure into a state-of-the-art heuristic for a specific problem in order to give evidences that, when a technique is able to reach an optimal solution, or a near-optimal solution with little chance of improvements, the mined patterns could be used to guide the search for the optimal or near optimal solution in less computational time. We developed a data mining hybrid version of a previously proposed and state-of-the-art multistart heuristic for the classical p -median problem. Computational experiments, conducted on a set of instances from the literature, showed that the new version of the heuristic was able to reach optimal and near-optimal solutions, on average, 27.32 % faster than the original strategy.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-014-1693-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Business and Management ; Combinatorial analysis ; Combinatorics ; Computing time ; Data mining ; Data Mining and Analytics ; Heuristic ; Heuristic programming ; Methods ; Operations research ; Operations Research/Decision Theory ; Optimization ; State of the art ; Theory of Computation</subject><ispartof>Annals of operations research, 2018-04, Vol.263 (1-2), p.141-162</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Annals of Operations Research is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-dab70cd3e7af53fefec3242c1ee5d94981c42ead7e9a2bd7d966ad59b7e01e2b3</citedby><cites>FETCH-LOGICAL-c420t-dab70cd3e7af53fefec3242c1ee5d94981c42ead7e9a2bd7d966ad59b7e01e2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-014-1693-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-014-1693-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Martins, Daniel</creatorcontrib><creatorcontrib>Vianna, Gabriel M.</creatorcontrib><creatorcontrib>Rosseti, Isabel</creatorcontrib><creatorcontrib>Martins, Simone L.</creatorcontrib><creatorcontrib>Plastino, Alexandre</creatorcontrib><title>Making a state-of-the-art heuristic faster with data mining</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>Hybrid metaheuristics—developed based on the combination of metaheuristics with concepts and techniques from other research areas—represent an important subject in combinatorial optimization research. Data mining techniques have been coupled with metaheuristics in order to obtain patterns of suboptimal solutions, which are used to guide the search for better-cost solutions. In this paper, we incorporate a data mining procedure into a state-of-the-art heuristic for a specific problem in order to give evidences that, when a technique is able to reach an optimal solution, or a near-optimal solution with little chance of improvements, the mined patterns could be used to guide the search for the optimal or near optimal solution in less computational time. We developed a data mining hybrid version of a previously proposed and state-of-the-art multistart heuristic for the classical p -median problem. Computational experiments, conducted on a set of instances from the literature, showed that the new version of the heuristic was able to reach optimal and near-optimal solutions, on average, 27.32 % faster than the original strategy.</description><subject>Business and Management</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Computing time</subject><subject>Data mining</subject><subject>Data Mining and Analytics</subject><subject>Heuristic</subject><subject>Heuristic programming</subject><subject>Methods</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>State of the art</subject><subject>Theory of Computation</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kV1rFTEQhoNY8Fj9Ad4teGtqPndP8KoUtUKlN_Y6zCaTPak9uzWTRfz3TTliW7AMZCA8T8LLy9g7KU6kEMNHksIMjgtpuOyd5uYF20g7KO603r5kG6Gs4VZr8Yq9JroWQki5tRv26Tv8zPPUQUcVKvIl8bpDDqV2O1xLpppDl4Aqlu53rrsuQoVun-cmvWFHCW4I3_7dx-zqy-cfZ-f84vLrt7PTCx6MEpVHGAcRosYBktUJEwatjAoS0UZn3FY2DiEO6ECNcYiu7yFaNw4oJKpRH7P3h3dvy_JrRar-elnL3L70Skjby960yP-oCW7Q5zkttUDYZwr-1GopnNFSN-rkP1SbiPsclhlTbvdPhA-PhHGlPCO1g_K0qzTBSvQUlwc8lIWoYPK3Je-h_PFS-Pum_KEp35ry90150xx1cKix84TlId_z0h1HT5QV</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Martins, Daniel</creator><creator>Vianna, Gabriel M.</creator><creator>Rosseti, Isabel</creator><creator>Martins, Simone L.</creator><creator>Plastino, Alexandre</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20180401</creationdate><title>Making a state-of-the-art heuristic faster with data mining</title><author>Martins, Daniel ; Vianna, Gabriel M. ; Rosseti, Isabel ; Martins, Simone L. ; Plastino, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-dab70cd3e7af53fefec3242c1ee5d94981c42ead7e9a2bd7d966ad59b7e01e2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Business and Management</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Computing time</topic><topic>Data mining</topic><topic>Data Mining and Analytics</topic><topic>Heuristic</topic><topic>Heuristic programming</topic><topic>Methods</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>State of the art</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, Daniel</creatorcontrib><creatorcontrib>Vianna, Gabriel M.</creatorcontrib><creatorcontrib>Rosseti, Isabel</creatorcontrib><creatorcontrib>Martins, Simone L.</creatorcontrib><creatorcontrib>Plastino, Alexandre</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, Daniel</au><au>Vianna, Gabriel M.</au><au>Rosseti, Isabel</au><au>Martins, Simone L.</au><au>Plastino, Alexandre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Making a state-of-the-art heuristic faster with data mining</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>263</volume><issue>1-2</issue><spage>141</spage><epage>162</epage><pages>141-162</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>Hybrid metaheuristics—developed based on the combination of metaheuristics with concepts and techniques from other research areas—represent an important subject in combinatorial optimization research. Data mining techniques have been coupled with metaheuristics in order to obtain patterns of suboptimal solutions, which are used to guide the search for better-cost solutions. In this paper, we incorporate a data mining procedure into a state-of-the-art heuristic for a specific problem in order to give evidences that, when a technique is able to reach an optimal solution, or a near-optimal solution with little chance of improvements, the mined patterns could be used to guide the search for the optimal or near optimal solution in less computational time. We developed a data mining hybrid version of a previously proposed and state-of-the-art multistart heuristic for the classical p -median problem. Computational experiments, conducted on a set of instances from the literature, showed that the new version of the heuristic was able to reach optimal and near-optimal solutions, on average, 27.32 % faster than the original strategy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-014-1693-4</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2018-04, Vol.263 (1-2), p.141-162
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_journals_2015616469
source Business Source Complete; SpringerNature Journals
subjects Business and Management
Combinatorial analysis
Combinatorics
Computing time
Data mining
Data Mining and Analytics
Heuristic
Heuristic programming
Methods
Operations research
Operations Research/Decision Theory
Optimization
State of the art
Theory of Computation
title Making a state-of-the-art heuristic faster with data mining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Making%20a%20state-of-the-art%20heuristic%20faster%20with%20data%20mining&rft.jtitle=Annals%20of%20operations%20research&rft.au=Martins,%20Daniel&rft.date=2018-04-01&rft.volume=263&rft.issue=1-2&rft.spage=141&rft.epage=162&rft.pages=141-162&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-014-1693-4&rft_dat=%3Cgale_proqu%3EA531094313%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015616469&rft_id=info:pmid/&rft_galeid=A531094313&rfr_iscdi=true