Distributed multi-task classification: a decentralized online learning approach
Although dispersing one single task to distributed learning nodes has been intensively studied by the previous research, multi-task learning on distributed networks is still an area that has not been fully exploited, especially under decentralized settings. The challenge lies in the fact that differ...
Gespeichert in:
Veröffentlicht in: | Machine learning 2018-04, Vol.107 (4), p.727-747 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 747 |
---|---|
container_issue | 4 |
container_start_page | 727 |
container_title | Machine learning |
container_volume | 107 |
creator | Zhang, Chi Zhao, Peilin Hao, Shuji Soh, Yeng Chai Lee, Bu Sung Miao, Chunyan Hoi, Steven C. H. |
description | Although dispersing one single task to distributed learning nodes has been intensively studied by the previous research, multi-task learning on distributed networks is still an area that has not been fully exploited, especially under decentralized settings. The challenge lies in the fact that different tasks may have different optimal learning weights while communication through the distributed network forces all tasks to converge to an unique classifier. In this paper, we present a novel algorithm to overcome this challenge and enable learning multiple tasks simultaneously on a decentralized distributed network. Specifically, the learning framework can be separated into two phases: (i) multi-task information is shared within each node on the first phase; (ii) communication between nodes then leads the whole network to converge to a common minimizer. Theoretical analysis indicates that our algorithm achieves a
O
(
T
)
regret bound when compared with the best classifier in hindsight, which is further validated by experiments on both synthetic and real-world datasets. |
doi_str_mv | 10.1007/s10994-017-5676-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2015584314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2015584314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8a78d92fd12522842006a2debd0aff79abb8f01fbe72968309a50cd86edc8dad3</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqXwA9giMRuundhx2BBvqVIXmC3Hj-KSOsV2hvLrcVUkJqa7fOecqw-hSwLXBKC9SQS6rsFAWsx4y_HuCM0Ia2sMjLNjNAMhGOaEslN0ltIaACgXfIaWDz7l6PspW1NtpiF7nFX6rPSgUvLOa5X9GG4rVRmrbchRDf67oGMYfLDVYFUMPqwqtd3GUemPc3Ti1JDsxe-do_enx7f7F7xYPr_e3y2wrlmXsVCtMB11pnxEqWgoAFfU2N6Acq7tVN8LB8T1tqUdFzV0ioE2glujhVGmnqOrQ2-Z_ZpsynI9TjGUSUmBMCaamjSFIgdKxzGlaJ3cRr9RcScJyL03efAmize59yZ3JUMPmVTYsLLxr_n_0A82tXJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015584314</pqid></control><display><type>article</type><title>Distributed multi-task classification: a decentralized online learning approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Chi ; Zhao, Peilin ; Hao, Shuji ; Soh, Yeng Chai ; Lee, Bu Sung ; Miao, Chunyan ; Hoi, Steven C. H.</creator><creatorcontrib>Zhang, Chi ; Zhao, Peilin ; Hao, Shuji ; Soh, Yeng Chai ; Lee, Bu Sung ; Miao, Chunyan ; Hoi, Steven C. H.</creatorcontrib><description>Although dispersing one single task to distributed learning nodes has been intensively studied by the previous research, multi-task learning on distributed networks is still an area that has not been fully exploited, especially under decentralized settings. The challenge lies in the fact that different tasks may have different optimal learning weights while communication through the distributed network forces all tasks to converge to an unique classifier. In this paper, we present a novel algorithm to overcome this challenge and enable learning multiple tasks simultaneously on a decentralized distributed network. Specifically, the learning framework can be separated into two phases: (i) multi-task information is shared within each node on the first phase; (ii) communication between nodes then leads the whole network to converge to a common minimizer. Theoretical analysis indicates that our algorithm achieves a
O
(
T
)
regret bound when compared with the best classifier in hindsight, which is further validated by experiments on both synthetic and real-world datasets.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-017-5676-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Classifiers ; Computer networks ; Computer Science ; Control ; Convergence ; Distance learning ; Machine learning ; Mechatronics ; Natural Language Processing (NLP) ; Robotics ; Simulation and Modeling ; Stress concentration</subject><ispartof>Machine learning, 2018-04, Vol.107 (4), p.727-747</ispartof><rights>The Author(s) 2017</rights><rights>Machine Learning is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8a78d92fd12522842006a2debd0aff79abb8f01fbe72968309a50cd86edc8dad3</citedby><cites>FETCH-LOGICAL-c359t-8a78d92fd12522842006a2debd0aff79abb8f01fbe72968309a50cd86edc8dad3</cites><orcidid>0000-0002-5735-4454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10994-017-5676-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10994-017-5676-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Zhao, Peilin</creatorcontrib><creatorcontrib>Hao, Shuji</creatorcontrib><creatorcontrib>Soh, Yeng Chai</creatorcontrib><creatorcontrib>Lee, Bu Sung</creatorcontrib><creatorcontrib>Miao, Chunyan</creatorcontrib><creatorcontrib>Hoi, Steven C. H.</creatorcontrib><title>Distributed multi-task classification: a decentralized online learning approach</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>Although dispersing one single task to distributed learning nodes has been intensively studied by the previous research, multi-task learning on distributed networks is still an area that has not been fully exploited, especially under decentralized settings. The challenge lies in the fact that different tasks may have different optimal learning weights while communication through the distributed network forces all tasks to converge to an unique classifier. In this paper, we present a novel algorithm to overcome this challenge and enable learning multiple tasks simultaneously on a decentralized distributed network. Specifically, the learning framework can be separated into two phases: (i) multi-task information is shared within each node on the first phase; (ii) communication between nodes then leads the whole network to converge to a common minimizer. Theoretical analysis indicates that our algorithm achieves a
O
(
T
)
regret bound when compared with the best classifier in hindsight, which is further validated by experiments on both synthetic and real-world datasets.</description><subject>Artificial Intelligence</subject><subject>Classifiers</subject><subject>Computer networks</subject><subject>Computer Science</subject><subject>Control</subject><subject>Convergence</subject><subject>Distance learning</subject><subject>Machine learning</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><subject>Stress concentration</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDtPwzAUhS0EEqXwA9giMRuundhx2BBvqVIXmC3Hj-KSOsV2hvLrcVUkJqa7fOecqw-hSwLXBKC9SQS6rsFAWsx4y_HuCM0Ia2sMjLNjNAMhGOaEslN0ltIaACgXfIaWDz7l6PspW1NtpiF7nFX6rPSgUvLOa5X9GG4rVRmrbchRDf67oGMYfLDVYFUMPqwqtd3GUemPc3Ti1JDsxe-do_enx7f7F7xYPr_e3y2wrlmXsVCtMB11pnxEqWgoAFfU2N6Acq7tVN8LB8T1tqUdFzV0ioE2glujhVGmnqOrQ2-Z_ZpsynI9TjGUSUmBMCaamjSFIgdKxzGlaJ3cRr9RcScJyL03efAmize59yZ3JUMPmVTYsLLxr_n_0A82tXJs</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Zhang, Chi</creator><creator>Zhao, Peilin</creator><creator>Hao, Shuji</creator><creator>Soh, Yeng Chai</creator><creator>Lee, Bu Sung</creator><creator>Miao, Chunyan</creator><creator>Hoi, Steven C. H.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5735-4454</orcidid></search><sort><creationdate>20180401</creationdate><title>Distributed multi-task classification: a decentralized online learning approach</title><author>Zhang, Chi ; Zhao, Peilin ; Hao, Shuji ; Soh, Yeng Chai ; Lee, Bu Sung ; Miao, Chunyan ; Hoi, Steven C. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8a78d92fd12522842006a2debd0aff79abb8f01fbe72968309a50cd86edc8dad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Classifiers</topic><topic>Computer networks</topic><topic>Computer Science</topic><topic>Control</topic><topic>Convergence</topic><topic>Distance learning</topic><topic>Machine learning</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><topic>Stress concentration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Zhao, Peilin</creatorcontrib><creatorcontrib>Hao, Shuji</creatorcontrib><creatorcontrib>Soh, Yeng Chai</creatorcontrib><creatorcontrib>Lee, Bu Sung</creatorcontrib><creatorcontrib>Miao, Chunyan</creatorcontrib><creatorcontrib>Hoi, Steven C. H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chi</au><au>Zhao, Peilin</au><au>Hao, Shuji</au><au>Soh, Yeng Chai</au><au>Lee, Bu Sung</au><au>Miao, Chunyan</au><au>Hoi, Steven C. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed multi-task classification: a decentralized online learning approach</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>107</volume><issue>4</issue><spage>727</spage><epage>747</epage><pages>727-747</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>Although dispersing one single task to distributed learning nodes has been intensively studied by the previous research, multi-task learning on distributed networks is still an area that has not been fully exploited, especially under decentralized settings. The challenge lies in the fact that different tasks may have different optimal learning weights while communication through the distributed network forces all tasks to converge to an unique classifier. In this paper, we present a novel algorithm to overcome this challenge and enable learning multiple tasks simultaneously on a decentralized distributed network. Specifically, the learning framework can be separated into two phases: (i) multi-task information is shared within each node on the first phase; (ii) communication between nodes then leads the whole network to converge to a common minimizer. Theoretical analysis indicates that our algorithm achieves a
O
(
T
)
regret bound when compared with the best classifier in hindsight, which is further validated by experiments on both synthetic and real-world datasets.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-017-5676-y</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5735-4454</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-6125 |
ispartof | Machine learning, 2018-04, Vol.107 (4), p.727-747 |
issn | 0885-6125 1573-0565 |
language | eng |
recordid | cdi_proquest_journals_2015584314 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Classifiers Computer networks Computer Science Control Convergence Distance learning Machine learning Mechatronics Natural Language Processing (NLP) Robotics Simulation and Modeling Stress concentration |
title | Distributed multi-task classification: a decentralized online learning approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20multi-task%20classification:%20a%20decentralized%20online%20learning%20approach&rft.jtitle=Machine%20learning&rft.au=Zhang,%20Chi&rft.date=2018-04-01&rft.volume=107&rft.issue=4&rft.spage=727&rft.epage=747&rft.pages=727-747&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-017-5676-y&rft_dat=%3Cproquest_cross%3E2015584314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015584314&rft_id=info:pmid/&rfr_iscdi=true |