Mineralogical–Geochemical Features of Ice-Rafted Sediments in Some Arctic Regions

The quantitative mineral composition estimated using the Rietveld method and some geochemical features are considered for bulk samples of the ice-rafted sediments (IRS) from some Arctic regions. Layer silicates in the studied samples vary from ~20 to ~50%. They are dominated by micas and their decom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lithology and Mineral Resources 2018-03, Vol.53 (2), p.110-129
Hauptverfasser: Maslov, A. V., Shevchenko, V. P., Bobrov, V. A., Belogub, E. V., Ershova, V. B., Vereshchagin, O. S., Khvorov, P. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue 2
container_start_page 110
container_title Lithology and Mineral Resources
container_volume 53
creator Maslov, A. V.
Shevchenko, V. P.
Bobrov, V. A.
Belogub, E. V.
Ershova, V. B.
Vereshchagin, O. S.
Khvorov, P. V.
description The quantitative mineral composition estimated using the Rietveld method and some geochemical features are considered for bulk samples of the ice-rafted sediments (IRS) from some Arctic regions. Layer silicates in the studied samples vary from ~20 to ~50%. They are dominated by micas and their decomposition products (illite and likely some part of smectites) at significant contents of kaolinite, chlorite, and transformation/decomposition products of the latter. A significant content of illite and muscovite among layer silicates in most IRS samples suggests that sources of the sedimentary material were mainly mineralogically similar to modern bottom sediments of the East Siberian and Chukchi seas, as well as presumably sediments of the eastern Laptev Sea. It is suggested that a significant kaolinite fraction in IRS samples from the North Pole area can be caused by the influx of ice-rafted fine-grained sedimentary material from the Beaufort or Chukchi seas, where kaolinite is supplied from the Bering Sea. Positions of IRS data points in the (La/Yb) N –Eu/Eu*, (La/Yb) N –(Eu/Sm) N , and (La/Yb) N –Th diagrams show that the studied samples contain variable proportions of erosion products of both mafic and felsic magmatic rocks and/or sufficiently mature sedimentary rocks. This conclusion is confirmed by localization of IRS data points in the Th/Co–La, Si/Al–Ce, and Si/Al–Sr diagrams.
doi_str_mv 10.1134/S0024490218020037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2015583586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2015583586</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-786e4caf837d97c1139cf66026bb253df069f4c57cacdc3f32256ef5edfe01db3</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4Dr0TwmmcmyFFsLFaGj6yFNbmpKZ1KT6cKd_-Af-iXOUMGFuLoczuNyDkLXlNxSyvO7ihCW54owWhJGCC9O0IhKUmacMXWKRgOdDfw5ukhpS3pcKDpC1aNvIepd2Hijd18fn3MI5hWaAeEZ6O4QIeHg8MJAttKuA4srsL6BtkvYt7gKDeBJNJ03eAUbH9p0ic6c3iW4-rlj9DK7f54-ZMun-WI6WWaac9VlRSkhN9qVvLCqMH0NZZyUhMn1mgluHZHK5UYURhtruOubCAlOgHVAqF3zMbo55u5jeDtA6uptOMS2f1kzQoUouShlr6JHlYkhpQiu3kff6PheU1IP29V_tus97OhJvbbdQPxN_t_0DRVgcRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015583586</pqid></control><display><type>article</type><title>Mineralogical–Geochemical Features of Ice-Rafted Sediments in Some Arctic Regions</title><source>SpringerLink Journals</source><creator>Maslov, A. V. ; Shevchenko, V. P. ; Bobrov, V. A. ; Belogub, E. V. ; Ershova, V. B. ; Vereshchagin, O. S. ; Khvorov, P. V.</creator><creatorcontrib>Maslov, A. V. ; Shevchenko, V. P. ; Bobrov, V. A. ; Belogub, E. V. ; Ershova, V. B. ; Vereshchagin, O. S. ; Khvorov, P. V.</creatorcontrib><description>The quantitative mineral composition estimated using the Rietveld method and some geochemical features are considered for bulk samples of the ice-rafted sediments (IRS) from some Arctic regions. Layer silicates in the studied samples vary from ~20 to ~50%. They are dominated by micas and their decomposition products (illite and likely some part of smectites) at significant contents of kaolinite, chlorite, and transformation/decomposition products of the latter. A significant content of illite and muscovite among layer silicates in most IRS samples suggests that sources of the sedimentary material were mainly mineralogically similar to modern bottom sediments of the East Siberian and Chukchi seas, as well as presumably sediments of the eastern Laptev Sea. It is suggested that a significant kaolinite fraction in IRS samples from the North Pole area can be caused by the influx of ice-rafted fine-grained sedimentary material from the Beaufort or Chukchi seas, where kaolinite is supplied from the Bering Sea. Positions of IRS data points in the (La/Yb) N –Eu/Eu*, (La/Yb) N –(Eu/Sm) N , and (La/Yb) N –Th diagrams show that the studied samples contain variable proportions of erosion products of both mafic and felsic magmatic rocks and/or sufficiently mature sedimentary rocks. This conclusion is confirmed by localization of IRS data points in the Th/Co–La, Si/Al–Ce, and Si/Al–Sr diagrams.</description><identifier>ISSN: 0024-4902</identifier><identifier>EISSN: 1608-3229</identifier><identifier>EISSN: 1573-8892</identifier><identifier>DOI: 10.1134/S0024490218020037</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminum ; Arctic zone ; Bottom sediments ; Chlorite ; Data points ; Decomposition ; Earth and Environmental Science ; Earth Sciences ; Erosion ; Geochemistry ; Ice environments ; Illite ; Illites ; Kaolinite ; Lanthanum ; Mica ; Micas ; Mineral composition ; Mineral Resources ; Mineralogy ; Muscovite ; North Pole ; Products ; Regions ; Rietveld method ; Rock ; Sediment ; Sedimentary rocks ; Sedimentology ; Sediments ; Silicates ; Silicon ; Smectites ; Ytterbium</subject><ispartof>Lithology and Mineral Resources, 2018-03, Vol.53 (2), p.110-129</ispartof><rights>Pleiades Publishing, Inc. 2018</rights><rights>Lithology and Mineral Resources is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-786e4caf837d97c1139cf66026bb253df069f4c57cacdc3f32256ef5edfe01db3</citedby><cites>FETCH-LOGICAL-a339t-786e4caf837d97c1139cf66026bb253df069f4c57cacdc3f32256ef5edfe01db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0024490218020037$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0024490218020037$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Maslov, A. V.</creatorcontrib><creatorcontrib>Shevchenko, V. P.</creatorcontrib><creatorcontrib>Bobrov, V. A.</creatorcontrib><creatorcontrib>Belogub, E. V.</creatorcontrib><creatorcontrib>Ershova, V. B.</creatorcontrib><creatorcontrib>Vereshchagin, O. S.</creatorcontrib><creatorcontrib>Khvorov, P. V.</creatorcontrib><title>Mineralogical–Geochemical Features of Ice-Rafted Sediments in Some Arctic Regions</title><title>Lithology and Mineral Resources</title><addtitle>Lithol Miner Resour</addtitle><description>The quantitative mineral composition estimated using the Rietveld method and some geochemical features are considered for bulk samples of the ice-rafted sediments (IRS) from some Arctic regions. Layer silicates in the studied samples vary from ~20 to ~50%. They are dominated by micas and their decomposition products (illite and likely some part of smectites) at significant contents of kaolinite, chlorite, and transformation/decomposition products of the latter. A significant content of illite and muscovite among layer silicates in most IRS samples suggests that sources of the sedimentary material were mainly mineralogically similar to modern bottom sediments of the East Siberian and Chukchi seas, as well as presumably sediments of the eastern Laptev Sea. It is suggested that a significant kaolinite fraction in IRS samples from the North Pole area can be caused by the influx of ice-rafted fine-grained sedimentary material from the Beaufort or Chukchi seas, where kaolinite is supplied from the Bering Sea. Positions of IRS data points in the (La/Yb) N –Eu/Eu*, (La/Yb) N –(Eu/Sm) N , and (La/Yb) N –Th diagrams show that the studied samples contain variable proportions of erosion products of both mafic and felsic magmatic rocks and/or sufficiently mature sedimentary rocks. This conclusion is confirmed by localization of IRS data points in the Th/Co–La, Si/Al–Ce, and Si/Al–Sr diagrams.</description><subject>Aluminum</subject><subject>Arctic zone</subject><subject>Bottom sediments</subject><subject>Chlorite</subject><subject>Data points</subject><subject>Decomposition</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Erosion</subject><subject>Geochemistry</subject><subject>Ice environments</subject><subject>Illite</subject><subject>Illites</subject><subject>Kaolinite</subject><subject>Lanthanum</subject><subject>Mica</subject><subject>Micas</subject><subject>Mineral composition</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Muscovite</subject><subject>North Pole</subject><subject>Products</subject><subject>Regions</subject><subject>Rietveld method</subject><subject>Rock</subject><subject>Sediment</subject><subject>Sedimentary rocks</subject><subject>Sedimentology</subject><subject>Sediments</subject><subject>Silicates</subject><subject>Silicon</subject><subject>Smectites</subject><subject>Ytterbium</subject><issn>0024-4902</issn><issn>1608-3229</issn><issn>1573-8892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMtKAzEUDaJgrX6Au4Dr0TwmmcmyFFsLFaGj6yFNbmpKZ1KT6cKd_-Af-iXOUMGFuLoczuNyDkLXlNxSyvO7ihCW54owWhJGCC9O0IhKUmacMXWKRgOdDfw5ukhpS3pcKDpC1aNvIepd2Hijd18fn3MI5hWaAeEZ6O4QIeHg8MJAttKuA4srsL6BtkvYt7gKDeBJNJ03eAUbH9p0ic6c3iW4-rlj9DK7f54-ZMun-WI6WWaac9VlRSkhN9qVvLCqMH0NZZyUhMn1mgluHZHK5UYURhtruOubCAlOgHVAqF3zMbo55u5jeDtA6uptOMS2f1kzQoUouShlr6JHlYkhpQiu3kff6PheU1IP29V_tus97OhJvbbdQPxN_t_0DRVgcRI</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Maslov, A. V.</creator><creator>Shevchenko, V. P.</creator><creator>Bobrov, V. A.</creator><creator>Belogub, E. V.</creator><creator>Ershova, V. B.</creator><creator>Vereshchagin, O. S.</creator><creator>Khvorov, P. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20180301</creationdate><title>Mineralogical–Geochemical Features of Ice-Rafted Sediments in Some Arctic Regions</title><author>Maslov, A. V. ; Shevchenko, V. P. ; Bobrov, V. A. ; Belogub, E. V. ; Ershova, V. B. ; Vereshchagin, O. S. ; Khvorov, P. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-786e4caf837d97c1139cf66026bb253df069f4c57cacdc3f32256ef5edfe01db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Arctic zone</topic><topic>Bottom sediments</topic><topic>Chlorite</topic><topic>Data points</topic><topic>Decomposition</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Erosion</topic><topic>Geochemistry</topic><topic>Ice environments</topic><topic>Illite</topic><topic>Illites</topic><topic>Kaolinite</topic><topic>Lanthanum</topic><topic>Mica</topic><topic>Micas</topic><topic>Mineral composition</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Muscovite</topic><topic>North Pole</topic><topic>Products</topic><topic>Regions</topic><topic>Rietveld method</topic><topic>Rock</topic><topic>Sediment</topic><topic>Sedimentary rocks</topic><topic>Sedimentology</topic><topic>Sediments</topic><topic>Silicates</topic><topic>Silicon</topic><topic>Smectites</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maslov, A. V.</creatorcontrib><creatorcontrib>Shevchenko, V. P.</creatorcontrib><creatorcontrib>Bobrov, V. A.</creatorcontrib><creatorcontrib>Belogub, E. V.</creatorcontrib><creatorcontrib>Ershova, V. B.</creatorcontrib><creatorcontrib>Vereshchagin, O. S.</creatorcontrib><creatorcontrib>Khvorov, P. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Lithology and Mineral Resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maslov, A. V.</au><au>Shevchenko, V. P.</au><au>Bobrov, V. A.</au><au>Belogub, E. V.</au><au>Ershova, V. B.</au><au>Vereshchagin, O. S.</au><au>Khvorov, P. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mineralogical–Geochemical Features of Ice-Rafted Sediments in Some Arctic Regions</atitle><jtitle>Lithology and Mineral Resources</jtitle><stitle>Lithol Miner Resour</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>53</volume><issue>2</issue><spage>110</spage><epage>129</epage><pages>110-129</pages><issn>0024-4902</issn><eissn>1608-3229</eissn><eissn>1573-8892</eissn><abstract>The quantitative mineral composition estimated using the Rietveld method and some geochemical features are considered for bulk samples of the ice-rafted sediments (IRS) from some Arctic regions. Layer silicates in the studied samples vary from ~20 to ~50%. They are dominated by micas and their decomposition products (illite and likely some part of smectites) at significant contents of kaolinite, chlorite, and transformation/decomposition products of the latter. A significant content of illite and muscovite among layer silicates in most IRS samples suggests that sources of the sedimentary material were mainly mineralogically similar to modern bottom sediments of the East Siberian and Chukchi seas, as well as presumably sediments of the eastern Laptev Sea. It is suggested that a significant kaolinite fraction in IRS samples from the North Pole area can be caused by the influx of ice-rafted fine-grained sedimentary material from the Beaufort or Chukchi seas, where kaolinite is supplied from the Bering Sea. Positions of IRS data points in the (La/Yb) N –Eu/Eu*, (La/Yb) N –(Eu/Sm) N , and (La/Yb) N –Th diagrams show that the studied samples contain variable proportions of erosion products of both mafic and felsic magmatic rocks and/or sufficiently mature sedimentary rocks. This conclusion is confirmed by localization of IRS data points in the Th/Co–La, Si/Al–Ce, and Si/Al–Sr diagrams.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0024490218020037</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-4902
ispartof Lithology and Mineral Resources, 2018-03, Vol.53 (2), p.110-129
issn 0024-4902
1608-3229
1573-8892
language eng
recordid cdi_proquest_journals_2015583586
source SpringerLink Journals
subjects Aluminum
Arctic zone
Bottom sediments
Chlorite
Data points
Decomposition
Earth and Environmental Science
Earth Sciences
Erosion
Geochemistry
Ice environments
Illite
Illites
Kaolinite
Lanthanum
Mica
Micas
Mineral composition
Mineral Resources
Mineralogy
Muscovite
North Pole
Products
Regions
Rietveld method
Rock
Sediment
Sedimentary rocks
Sedimentology
Sediments
Silicates
Silicon
Smectites
Ytterbium
title Mineralogical–Geochemical Features of Ice-Rafted Sediments in Some Arctic Regions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mineralogical%E2%80%93Geochemical%20Features%20of%20Ice-Rafted%20Sediments%20in%20Some%20Arctic%20Regions&rft.jtitle=Lithology%20and%20Mineral%20Resources&rft.au=Maslov,%20A.%20V.&rft.date=2018-03-01&rft.volume=53&rft.issue=2&rft.spage=110&rft.epage=129&rft.pages=110-129&rft.issn=0024-4902&rft.eissn=1608-3229&rft_id=info:doi/10.1134/S0024490218020037&rft_dat=%3Cproquest_cross%3E2015583586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015583586&rft_id=info:pmid/&rfr_iscdi=true