Mineralogical–Geochemical Features of Ice-Rafted Sediments in Some Arctic Regions
The quantitative mineral composition estimated using the Rietveld method and some geochemical features are considered for bulk samples of the ice-rafted sediments (IRS) from some Arctic regions. Layer silicates in the studied samples vary from ~20 to ~50%. They are dominated by micas and their decom...
Gespeichert in:
Veröffentlicht in: | Lithology and Mineral Resources 2018-03, Vol.53 (2), p.110-129 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 129 |
---|---|
container_issue | 2 |
container_start_page | 110 |
container_title | Lithology and Mineral Resources |
container_volume | 53 |
creator | Maslov, A. V. Shevchenko, V. P. Bobrov, V. A. Belogub, E. V. Ershova, V. B. Vereshchagin, O. S. Khvorov, P. V. |
description | The quantitative mineral composition estimated using the Rietveld method and some geochemical features are considered for bulk samples of the ice-rafted sediments (IRS) from some Arctic regions. Layer silicates in the studied samples vary from ~20 to ~50%. They are dominated by micas and their decomposition products (illite and likely some part of smectites) at significant contents of kaolinite, chlorite, and transformation/decomposition products of the latter. A significant content of illite and muscovite among layer silicates in most IRS samples suggests that sources of the sedimentary material were mainly mineralogically similar to modern bottom sediments of the East Siberian and Chukchi seas, as well as presumably sediments of the eastern Laptev Sea. It is suggested that a significant kaolinite fraction in IRS samples from the North Pole area can be caused by the influx of ice-rafted fine-grained sedimentary material from the Beaufort or Chukchi seas, where kaolinite is supplied from the Bering Sea. Positions of IRS data points in the (La/Yb)
N
–Eu/Eu*, (La/Yb)
N
–(Eu/Sm)
N
, and (La/Yb)
N
–Th diagrams show that the studied samples contain variable proportions of erosion products of both mafic and felsic magmatic rocks and/or sufficiently mature sedimentary rocks. This conclusion is confirmed by localization of IRS data points in the Th/Co–La, Si/Al–Ce, and Si/Al–Sr diagrams. |
doi_str_mv | 10.1134/S0024490218020037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2015583586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2015583586</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-786e4caf837d97c1139cf66026bb253df069f4c57cacdc3f32256ef5edfe01db3</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4Dr0TwmmcmyFFsLFaGj6yFNbmpKZ1KT6cKd_-Af-iXOUMGFuLoczuNyDkLXlNxSyvO7ihCW54owWhJGCC9O0IhKUmacMXWKRgOdDfw5ukhpS3pcKDpC1aNvIepd2Hijd18fn3MI5hWaAeEZ6O4QIeHg8MJAttKuA4srsL6BtkvYt7gKDeBJNJ03eAUbH9p0ic6c3iW4-rlj9DK7f54-ZMun-WI6WWaac9VlRSkhN9qVvLCqMH0NZZyUhMn1mgluHZHK5UYURhtruOubCAlOgHVAqF3zMbo55u5jeDtA6uptOMS2f1kzQoUouShlr6JHlYkhpQiu3kff6PheU1IP29V_tus97OhJvbbdQPxN_t_0DRVgcRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015583586</pqid></control><display><type>article</type><title>Mineralogical–Geochemical Features of Ice-Rafted Sediments in Some Arctic Regions</title><source>SpringerLink Journals</source><creator>Maslov, A. V. ; Shevchenko, V. P. ; Bobrov, V. A. ; Belogub, E. V. ; Ershova, V. B. ; Vereshchagin, O. S. ; Khvorov, P. V.</creator><creatorcontrib>Maslov, A. V. ; Shevchenko, V. P. ; Bobrov, V. A. ; Belogub, E. V. ; Ershova, V. B. ; Vereshchagin, O. S. ; Khvorov, P. V.</creatorcontrib><description>The quantitative mineral composition estimated using the Rietveld method and some geochemical features are considered for bulk samples of the ice-rafted sediments (IRS) from some Arctic regions. Layer silicates in the studied samples vary from ~20 to ~50%. They are dominated by micas and their decomposition products (illite and likely some part of smectites) at significant contents of kaolinite, chlorite, and transformation/decomposition products of the latter. A significant content of illite and muscovite among layer silicates in most IRS samples suggests that sources of the sedimentary material were mainly mineralogically similar to modern bottom sediments of the East Siberian and Chukchi seas, as well as presumably sediments of the eastern Laptev Sea. It is suggested that a significant kaolinite fraction in IRS samples from the North Pole area can be caused by the influx of ice-rafted fine-grained sedimentary material from the Beaufort or Chukchi seas, where kaolinite is supplied from the Bering Sea. Positions of IRS data points in the (La/Yb)
N
–Eu/Eu*, (La/Yb)
N
–(Eu/Sm)
N
, and (La/Yb)
N
–Th diagrams show that the studied samples contain variable proportions of erosion products of both mafic and felsic magmatic rocks and/or sufficiently mature sedimentary rocks. This conclusion is confirmed by localization of IRS data points in the Th/Co–La, Si/Al–Ce, and Si/Al–Sr diagrams.</description><identifier>ISSN: 0024-4902</identifier><identifier>EISSN: 1608-3229</identifier><identifier>EISSN: 1573-8892</identifier><identifier>DOI: 10.1134/S0024490218020037</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminum ; Arctic zone ; Bottom sediments ; Chlorite ; Data points ; Decomposition ; Earth and Environmental Science ; Earth Sciences ; Erosion ; Geochemistry ; Ice environments ; Illite ; Illites ; Kaolinite ; Lanthanum ; Mica ; Micas ; Mineral composition ; Mineral Resources ; Mineralogy ; Muscovite ; North Pole ; Products ; Regions ; Rietveld method ; Rock ; Sediment ; Sedimentary rocks ; Sedimentology ; Sediments ; Silicates ; Silicon ; Smectites ; Ytterbium</subject><ispartof>Lithology and Mineral Resources, 2018-03, Vol.53 (2), p.110-129</ispartof><rights>Pleiades Publishing, Inc. 2018</rights><rights>Lithology and Mineral Resources is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-786e4caf837d97c1139cf66026bb253df069f4c57cacdc3f32256ef5edfe01db3</citedby><cites>FETCH-LOGICAL-a339t-786e4caf837d97c1139cf66026bb253df069f4c57cacdc3f32256ef5edfe01db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0024490218020037$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0024490218020037$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Maslov, A. V.</creatorcontrib><creatorcontrib>Shevchenko, V. P.</creatorcontrib><creatorcontrib>Bobrov, V. A.</creatorcontrib><creatorcontrib>Belogub, E. V.</creatorcontrib><creatorcontrib>Ershova, V. B.</creatorcontrib><creatorcontrib>Vereshchagin, O. S.</creatorcontrib><creatorcontrib>Khvorov, P. V.</creatorcontrib><title>Mineralogical–Geochemical Features of Ice-Rafted Sediments in Some Arctic Regions</title><title>Lithology and Mineral Resources</title><addtitle>Lithol Miner Resour</addtitle><description>The quantitative mineral composition estimated using the Rietveld method and some geochemical features are considered for bulk samples of the ice-rafted sediments (IRS) from some Arctic regions. Layer silicates in the studied samples vary from ~20 to ~50%. They are dominated by micas and their decomposition products (illite and likely some part of smectites) at significant contents of kaolinite, chlorite, and transformation/decomposition products of the latter. A significant content of illite and muscovite among layer silicates in most IRS samples suggests that sources of the sedimentary material were mainly mineralogically similar to modern bottom sediments of the East Siberian and Chukchi seas, as well as presumably sediments of the eastern Laptev Sea. It is suggested that a significant kaolinite fraction in IRS samples from the North Pole area can be caused by the influx of ice-rafted fine-grained sedimentary material from the Beaufort or Chukchi seas, where kaolinite is supplied from the Bering Sea. Positions of IRS data points in the (La/Yb)
N
–Eu/Eu*, (La/Yb)
N
–(Eu/Sm)
N
, and (La/Yb)
N
–Th diagrams show that the studied samples contain variable proportions of erosion products of both mafic and felsic magmatic rocks and/or sufficiently mature sedimentary rocks. This conclusion is confirmed by localization of IRS data points in the Th/Co–La, Si/Al–Ce, and Si/Al–Sr diagrams.</description><subject>Aluminum</subject><subject>Arctic zone</subject><subject>Bottom sediments</subject><subject>Chlorite</subject><subject>Data points</subject><subject>Decomposition</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Erosion</subject><subject>Geochemistry</subject><subject>Ice environments</subject><subject>Illite</subject><subject>Illites</subject><subject>Kaolinite</subject><subject>Lanthanum</subject><subject>Mica</subject><subject>Micas</subject><subject>Mineral composition</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Muscovite</subject><subject>North Pole</subject><subject>Products</subject><subject>Regions</subject><subject>Rietveld method</subject><subject>Rock</subject><subject>Sediment</subject><subject>Sedimentary rocks</subject><subject>Sedimentology</subject><subject>Sediments</subject><subject>Silicates</subject><subject>Silicon</subject><subject>Smectites</subject><subject>Ytterbium</subject><issn>0024-4902</issn><issn>1608-3229</issn><issn>1573-8892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMtKAzEUDaJgrX6Au4Dr0TwmmcmyFFsLFaGj6yFNbmpKZ1KT6cKd_-Af-iXOUMGFuLoczuNyDkLXlNxSyvO7ihCW54owWhJGCC9O0IhKUmacMXWKRgOdDfw5ukhpS3pcKDpC1aNvIepd2Hijd18fn3MI5hWaAeEZ6O4QIeHg8MJAttKuA4srsL6BtkvYt7gKDeBJNJ03eAUbH9p0ic6c3iW4-rlj9DK7f54-ZMun-WI6WWaac9VlRSkhN9qVvLCqMH0NZZyUhMn1mgluHZHK5UYURhtruOubCAlOgHVAqF3zMbo55u5jeDtA6uptOMS2f1kzQoUouShlr6JHlYkhpQiu3kff6PheU1IP29V_tus97OhJvbbdQPxN_t_0DRVgcRI</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Maslov, A. V.</creator><creator>Shevchenko, V. P.</creator><creator>Bobrov, V. A.</creator><creator>Belogub, E. V.</creator><creator>Ershova, V. B.</creator><creator>Vereshchagin, O. S.</creator><creator>Khvorov, P. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20180301</creationdate><title>Mineralogical–Geochemical Features of Ice-Rafted Sediments in Some Arctic Regions</title><author>Maslov, A. V. ; Shevchenko, V. P. ; Bobrov, V. A. ; Belogub, E. V. ; Ershova, V. B. ; Vereshchagin, O. S. ; Khvorov, P. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-786e4caf837d97c1139cf66026bb253df069f4c57cacdc3f32256ef5edfe01db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Arctic zone</topic><topic>Bottom sediments</topic><topic>Chlorite</topic><topic>Data points</topic><topic>Decomposition</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Erosion</topic><topic>Geochemistry</topic><topic>Ice environments</topic><topic>Illite</topic><topic>Illites</topic><topic>Kaolinite</topic><topic>Lanthanum</topic><topic>Mica</topic><topic>Micas</topic><topic>Mineral composition</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Muscovite</topic><topic>North Pole</topic><topic>Products</topic><topic>Regions</topic><topic>Rietveld method</topic><topic>Rock</topic><topic>Sediment</topic><topic>Sedimentary rocks</topic><topic>Sedimentology</topic><topic>Sediments</topic><topic>Silicates</topic><topic>Silicon</topic><topic>Smectites</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maslov, A. V.</creatorcontrib><creatorcontrib>Shevchenko, V. P.</creatorcontrib><creatorcontrib>Bobrov, V. A.</creatorcontrib><creatorcontrib>Belogub, E. V.</creatorcontrib><creatorcontrib>Ershova, V. B.</creatorcontrib><creatorcontrib>Vereshchagin, O. S.</creatorcontrib><creatorcontrib>Khvorov, P. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Lithology and Mineral Resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maslov, A. V.</au><au>Shevchenko, V. P.</au><au>Bobrov, V. A.</au><au>Belogub, E. V.</au><au>Ershova, V. B.</au><au>Vereshchagin, O. S.</au><au>Khvorov, P. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mineralogical–Geochemical Features of Ice-Rafted Sediments in Some Arctic Regions</atitle><jtitle>Lithology and Mineral Resources</jtitle><stitle>Lithol Miner Resour</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>53</volume><issue>2</issue><spage>110</spage><epage>129</epage><pages>110-129</pages><issn>0024-4902</issn><eissn>1608-3229</eissn><eissn>1573-8892</eissn><abstract>The quantitative mineral composition estimated using the Rietveld method and some geochemical features are considered for bulk samples of the ice-rafted sediments (IRS) from some Arctic regions. Layer silicates in the studied samples vary from ~20 to ~50%. They are dominated by micas and their decomposition products (illite and likely some part of smectites) at significant contents of kaolinite, chlorite, and transformation/decomposition products of the latter. A significant content of illite and muscovite among layer silicates in most IRS samples suggests that sources of the sedimentary material were mainly mineralogically similar to modern bottom sediments of the East Siberian and Chukchi seas, as well as presumably sediments of the eastern Laptev Sea. It is suggested that a significant kaolinite fraction in IRS samples from the North Pole area can be caused by the influx of ice-rafted fine-grained sedimentary material from the Beaufort or Chukchi seas, where kaolinite is supplied from the Bering Sea. Positions of IRS data points in the (La/Yb)
N
–Eu/Eu*, (La/Yb)
N
–(Eu/Sm)
N
, and (La/Yb)
N
–Th diagrams show that the studied samples contain variable proportions of erosion products of both mafic and felsic magmatic rocks and/or sufficiently mature sedimentary rocks. This conclusion is confirmed by localization of IRS data points in the Th/Co–La, Si/Al–Ce, and Si/Al–Sr diagrams.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0024490218020037</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-4902 |
ispartof | Lithology and Mineral Resources, 2018-03, Vol.53 (2), p.110-129 |
issn | 0024-4902 1608-3229 1573-8892 |
language | eng |
recordid | cdi_proquest_journals_2015583586 |
source | SpringerLink Journals |
subjects | Aluminum Arctic zone Bottom sediments Chlorite Data points Decomposition Earth and Environmental Science Earth Sciences Erosion Geochemistry Ice environments Illite Illites Kaolinite Lanthanum Mica Micas Mineral composition Mineral Resources Mineralogy Muscovite North Pole Products Regions Rietveld method Rock Sediment Sedimentary rocks Sedimentology Sediments Silicates Silicon Smectites Ytterbium |
title | Mineralogical–Geochemical Features of Ice-Rafted Sediments in Some Arctic Regions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mineralogical%E2%80%93Geochemical%20Features%20of%20Ice-Rafted%20Sediments%20in%20Some%20Arctic%20Regions&rft.jtitle=Lithology%20and%20Mineral%20Resources&rft.au=Maslov,%20A.%20V.&rft.date=2018-03-01&rft.volume=53&rft.issue=2&rft.spage=110&rft.epage=129&rft.pages=110-129&rft.issn=0024-4902&rft.eissn=1608-3229&rft_id=info:doi/10.1134/S0024490218020037&rft_dat=%3Cproquest_cross%3E2015583586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015583586&rft_id=info:pmid/&rfr_iscdi=true |