Detection of helmets on motorcyclists

The use of motorcycle accidents has rapidly increased. Although the helmet is the main safety equipment of motorcyclists, many drivers do not use it. This paper proposed a method for motorcycle detection and classification and a system for the detection of motorcyclists without helmets. For vehicle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2018-03, Vol.77 (5), p.5659-5683
Hauptverfasser: Silva, Romuere R. V. e, Aires, Kelson R. T., Veras, Rodrigo de M. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5683
container_issue 5
container_start_page 5659
container_title Multimedia tools and applications
container_volume 77
creator Silva, Romuere R. V. e
Aires, Kelson R. T.
Veras, Rodrigo de M. S.
description The use of motorcycle accidents has rapidly increased. Although the helmet is the main safety equipment of motorcyclists, many drivers do not use it. This paper proposed a method for motorcycle detection and classification and a system for the detection of motorcyclists without helmets. For vehicle classification, we have employed the wavelet transform (WT) as the descriptor and the random forest as the classifier. For helmet detection, the circular Hough transform (CHT) and the histogram of oriented gradients (HOG) descriptor were applied to extract the image attributes, and the multilayer perceptron (MLP) classifier was used to classify the objects. The results for vehicle classification achieved an accuracy rate of 97.78 %. The algorithm step in the helmet detection accomplished an accuracy rate of 91.37 %. The results were obtained with the author’s database.
doi_str_mv 10.1007/s11042-017-4482-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2015495860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2015495860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f29878b12c43553447b49483ae08b9a345ba6355936f401a937a2aeca01bbdf43</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCeIzOJJNN9ij1Ewpe9ByyMastbVOT9NB_b8oKnjzNDPN-wMPYJcINAujbjAgkOKDmREZwfcQmqLTkWgs8rrs0wLUCPGVnOS8BsFWCJuz6PpTgyyJumjg0X2G1DiU39VrHEpPf-9Uil3zOTga3yuHid07Z--PD2-yZz1-fXmZ3c-4ltoUPojPa9Cg8SaUkke6pIyNdANN3TpLqXVs_nWwHAnSd1E644B1g338MJKfsaszdpvi9C7nYZdylTa20AlBRp0wLVYWjyqeYcwqD3abF2qW9RbAHGnakYSsNe6BhdfWI0ZOrdvMZ0l_y_6YfXi9f5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015495860</pqid></control><display><type>article</type><title>Detection of helmets on motorcyclists</title><source>Springer Nature - Complete Springer Journals</source><creator>Silva, Romuere R. V. e ; Aires, Kelson R. T. ; Veras, Rodrigo de M. S.</creator><creatorcontrib>Silva, Romuere R. V. e ; Aires, Kelson R. T. ; Veras, Rodrigo de M. S.</creatorcontrib><description>The use of motorcycle accidents has rapidly increased. Although the helmet is the main safety equipment of motorcyclists, many drivers do not use it. This paper proposed a method for motorcycle detection and classification and a system for the detection of motorcyclists without helmets. For vehicle classification, we have employed the wavelet transform (WT) as the descriptor and the random forest as the classifier. For helmet detection, the circular Hough transform (CHT) and the histogram of oriented gradients (HOG) descriptor were applied to extract the image attributes, and the multilayer perceptron (MLP) classifier was used to classify the objects. The results for vehicle classification achieved an accuracy rate of 97.78 %. The algorithm step in the helmet detection accomplished an accuracy rate of 91.37 %. The results were obtained with the author’s database.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-017-4482-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classifiers ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Helmets ; Hough transformation ; Image classification ; Motorcycles ; Multilayer perceptrons ; Multimedia Information Systems ; Safety equipment ; Special Purpose and Application-Based Systems ; Wavelet transforms</subject><ispartof>Multimedia tools and applications, 2018-03, Vol.77 (5), p.5659-5683</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f29878b12c43553447b49483ae08b9a345ba6355936f401a937a2aeca01bbdf43</citedby><cites>FETCH-LOGICAL-c316t-f29878b12c43553447b49483ae08b9a345ba6355936f401a937a2aeca01bbdf43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-017-4482-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-017-4482-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Silva, Romuere R. V. e</creatorcontrib><creatorcontrib>Aires, Kelson R. T.</creatorcontrib><creatorcontrib>Veras, Rodrigo de M. S.</creatorcontrib><title>Detection of helmets on motorcyclists</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>The use of motorcycle accidents has rapidly increased. Although the helmet is the main safety equipment of motorcyclists, many drivers do not use it. This paper proposed a method for motorcycle detection and classification and a system for the detection of motorcyclists without helmets. For vehicle classification, we have employed the wavelet transform (WT) as the descriptor and the random forest as the classifier. For helmet detection, the circular Hough transform (CHT) and the histogram of oriented gradients (HOG) descriptor were applied to extract the image attributes, and the multilayer perceptron (MLP) classifier was used to classify the objects. The results for vehicle classification achieved an accuracy rate of 97.78 %. The algorithm step in the helmet detection accomplished an accuracy rate of 91.37 %. The results were obtained with the author’s database.</description><subject>Classifiers</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Helmets</subject><subject>Hough transformation</subject><subject>Image classification</subject><subject>Motorcycles</subject><subject>Multilayer perceptrons</subject><subject>Multimedia Information Systems</subject><subject>Safety equipment</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Wavelet transforms</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuCeIzOJJNN9ij1Ewpe9ByyMastbVOT9NB_b8oKnjzNDPN-wMPYJcINAujbjAgkOKDmREZwfcQmqLTkWgs8rrs0wLUCPGVnOS8BsFWCJuz6PpTgyyJumjg0X2G1DiU39VrHEpPf-9Uil3zOTga3yuHid07Z--PD2-yZz1-fXmZ3c-4ltoUPojPa9Cg8SaUkke6pIyNdANN3TpLqXVs_nWwHAnSd1E644B1g338MJKfsaszdpvi9C7nYZdylTa20AlBRp0wLVYWjyqeYcwqD3abF2qW9RbAHGnakYSsNe6BhdfWI0ZOrdvMZ0l_y_6YfXi9f5Q</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Silva, Romuere R. V. e</creator><creator>Aires, Kelson R. T.</creator><creator>Veras, Rodrigo de M. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20180301</creationdate><title>Detection of helmets on motorcyclists</title><author>Silva, Romuere R. V. e ; Aires, Kelson R. T. ; Veras, Rodrigo de M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f29878b12c43553447b49483ae08b9a345ba6355936f401a937a2aeca01bbdf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classifiers</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Helmets</topic><topic>Hough transformation</topic><topic>Image classification</topic><topic>Motorcycles</topic><topic>Multilayer perceptrons</topic><topic>Multimedia Information Systems</topic><topic>Safety equipment</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Romuere R. V. e</creatorcontrib><creatorcontrib>Aires, Kelson R. T.</creatorcontrib><creatorcontrib>Veras, Rodrigo de M. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Romuere R. V. e</au><au>Aires, Kelson R. T.</au><au>Veras, Rodrigo de M. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of helmets on motorcyclists</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>77</volume><issue>5</issue><spage>5659</spage><epage>5683</epage><pages>5659-5683</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>The use of motorcycle accidents has rapidly increased. Although the helmet is the main safety equipment of motorcyclists, many drivers do not use it. This paper proposed a method for motorcycle detection and classification and a system for the detection of motorcyclists without helmets. For vehicle classification, we have employed the wavelet transform (WT) as the descriptor and the random forest as the classifier. For helmet detection, the circular Hough transform (CHT) and the histogram of oriented gradients (HOG) descriptor were applied to extract the image attributes, and the multilayer perceptron (MLP) classifier was used to classify the objects. The results for vehicle classification achieved an accuracy rate of 97.78 %. The algorithm step in the helmet detection accomplished an accuracy rate of 91.37 %. The results were obtained with the author’s database.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-017-4482-7</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2018-03, Vol.77 (5), p.5659-5683
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2015495860
source Springer Nature - Complete Springer Journals
subjects Classifiers
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Helmets
Hough transformation
Image classification
Motorcycles
Multilayer perceptrons
Multimedia Information Systems
Safety equipment
Special Purpose and Application-Based Systems
Wavelet transforms
title Detection of helmets on motorcyclists
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20helmets%20on%20motorcyclists&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Silva,%20Romuere%20R.%20V.%20e&rft.date=2018-03-01&rft.volume=77&rft.issue=5&rft.spage=5659&rft.epage=5683&rft.pages=5659-5683&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-017-4482-7&rft_dat=%3Cproquest_cross%3E2015495860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015495860&rft_id=info:pmid/&rfr_iscdi=true