More Robust Features for Adaptive Visual Navigation of UAVs in Mixed Environments
In this paper, we present an autonomous visual navigation system that determines the location of the unmanned aerial vehicle (UAV) in GPS-denied environment by detecting semantic features (roads centrelines, intersections, outlines of forest and river) in aerial imagery and matching them to a pre-bu...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2018-05, Vol.90 (1-2), p.171-187 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 187 |
---|---|
container_issue | 1-2 |
container_start_page | 171 |
container_title | Journal of intelligent & robotic systems |
container_volume | 90 |
creator | Volkova, Anastasiia Gibbens, Peter W |
description | In this paper, we present an autonomous visual navigation system that determines the location of the unmanned aerial vehicle (UAV) in GPS-denied environment by detecting semantic features (roads centrelines, intersections, outlines of forest and river) in aerial imagery and matching them to a pre-built dataset. This work is centred around testing the capability of a road centreline modelling and matching algorithm to localise accurately. Alongside, dynamic feature modelling and minimalistic description to optimise data association are proposed. We test three novel datasets with satellite imagery covering the same rural area with significant seasonal and lighting variation. |
doi_str_mv | 10.1007/s10846-017-0650-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2015453948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2015453948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c161t-6b657cd12e8af4194bd7e066998da846f9f72b778ac25c7b37c75b29eece47d3</originalsourceid><addsrcrecordid>eNotj09LwzAcQIMoWKcfwFvAc_SXNH-aYxmbCpuizF1H2v4qGbOZSVr8-A709G7v8Qi55XDPAcxD4lBJzYAbBloBE2ek4MqUDCTYc1KAFZyBsPqSXKW0BwBbKVuQt3WISN9DM6ZMl-jyGDHRPkRad-6Y_YR069PoDvTFTf7TZR8GGnr6UW8T9QNd-x_s6GKYfAzDFw45XZOL3h0S3vxzRjbLxWb-xFavj8_zesVarnlmutHKtB0XWLleciubziBobW3VudNKb3sjGmMq1wrVmqY0rVGNsIgtStOVM3L3pz3G8D1iyrt9GONwKu4EcCVVaWVV_gKdwlFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015453948</pqid></control><display><type>article</type><title>More Robust Features for Adaptive Visual Navigation of UAVs in Mixed Environments</title><source>Springer Nature - Complete Springer Journals</source><creator>Volkova, Anastasiia ; Gibbens, Peter W</creator><creatorcontrib>Volkova, Anastasiia ; Gibbens, Peter W</creatorcontrib><description>In this paper, we present an autonomous visual navigation system that determines the location of the unmanned aerial vehicle (UAV) in GPS-denied environment by detecting semantic features (roads centrelines, intersections, outlines of forest and river) in aerial imagery and matching them to a pre-built dataset. This work is centred around testing the capability of a road centreline modelling and matching algorithm to localise accurately. Alongside, dynamic feature modelling and minimalistic description to optimise data association are proposed. We test three novel datasets with satellite imagery covering the same rural area with significant seasonal and lighting variation.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-017-0650-2</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Autonomous navigation ; Model matching ; Modelling ; Navigation systems ; Rural areas ; Satellite imagery ; Traffic intersections ; Unmanned aerial vehicles</subject><ispartof>Journal of intelligent & robotic systems, 2018-05, Vol.90 (1-2), p.171-187</ispartof><rights>Journal of Intelligent & Robotic Systems is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c161t-6b657cd12e8af4194bd7e066998da846f9f72b778ac25c7b37c75b29eece47d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Volkova, Anastasiia</creatorcontrib><creatorcontrib>Gibbens, Peter W</creatorcontrib><title>More Robust Features for Adaptive Visual Navigation of UAVs in Mixed Environments</title><title>Journal of intelligent & robotic systems</title><description>In this paper, we present an autonomous visual navigation system that determines the location of the unmanned aerial vehicle (UAV) in GPS-denied environment by detecting semantic features (roads centrelines, intersections, outlines of forest and river) in aerial imagery and matching them to a pre-built dataset. This work is centred around testing the capability of a road centreline modelling and matching algorithm to localise accurately. Alongside, dynamic feature modelling and minimalistic description to optimise data association are proposed. We test three novel datasets with satellite imagery covering the same rural area with significant seasonal and lighting variation.</description><subject>Autonomous navigation</subject><subject>Model matching</subject><subject>Modelling</subject><subject>Navigation systems</subject><subject>Rural areas</subject><subject>Satellite imagery</subject><subject>Traffic intersections</subject><subject>Unmanned aerial vehicles</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotj09LwzAcQIMoWKcfwFvAc_SXNH-aYxmbCpuizF1H2v4qGbOZSVr8-A709G7v8Qi55XDPAcxD4lBJzYAbBloBE2ek4MqUDCTYc1KAFZyBsPqSXKW0BwBbKVuQt3WISN9DM6ZMl-jyGDHRPkRad-6Y_YR069PoDvTFTf7TZR8GGnr6UW8T9QNd-x_s6GKYfAzDFw45XZOL3h0S3vxzRjbLxWb-xFavj8_zesVarnlmutHKtB0XWLleciubziBobW3VudNKb3sjGmMq1wrVmqY0rVGNsIgtStOVM3L3pz3G8D1iyrt9GONwKu4EcCVVaWVV_gKdwlFA</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Volkova, Anastasiia</creator><creator>Gibbens, Peter W</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20180501</creationdate><title>More Robust Features for Adaptive Visual Navigation of UAVs in Mixed Environments</title><author>Volkova, Anastasiia ; Gibbens, Peter W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c161t-6b657cd12e8af4194bd7e066998da846f9f72b778ac25c7b37c75b29eece47d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Autonomous navigation</topic><topic>Model matching</topic><topic>Modelling</topic><topic>Navigation systems</topic><topic>Rural areas</topic><topic>Satellite imagery</topic><topic>Traffic intersections</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkova, Anastasiia</creatorcontrib><creatorcontrib>Gibbens, Peter W</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volkova, Anastasiia</au><au>Gibbens, Peter W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>More Robust Features for Adaptive Visual Navigation of UAVs in Mixed Environments</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><date>2018-05-01</date><risdate>2018</risdate><volume>90</volume><issue>1-2</issue><spage>171</spage><epage>187</epage><pages>171-187</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>In this paper, we present an autonomous visual navigation system that determines the location of the unmanned aerial vehicle (UAV) in GPS-denied environment by detecting semantic features (roads centrelines, intersections, outlines of forest and river) in aerial imagery and matching them to a pre-built dataset. This work is centred around testing the capability of a road centreline modelling and matching algorithm to localise accurately. Alongside, dynamic feature modelling and minimalistic description to optimise data association are proposed. We test three novel datasets with satellite imagery covering the same rural area with significant seasonal and lighting variation.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10846-017-0650-2</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2018-05, Vol.90 (1-2), p.171-187 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_proquest_journals_2015453948 |
source | Springer Nature - Complete Springer Journals |
subjects | Autonomous navigation Model matching Modelling Navigation systems Rural areas Satellite imagery Traffic intersections Unmanned aerial vehicles |
title | More Robust Features for Adaptive Visual Navigation of UAVs in Mixed Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=More%20Robust%20Features%20for%20Adaptive%20Visual%20Navigation%20of%20UAVs%20in%20Mixed%20Environments&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Volkova,%20Anastasiia&rft.date=2018-05-01&rft.volume=90&rft.issue=1-2&rft.spage=171&rft.epage=187&rft.pages=171-187&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-017-0650-2&rft_dat=%3Cproquest%3E2015453948%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015453948&rft_id=info:pmid/&rfr_iscdi=true |