The disturbance rejection of magnetically suspended inertially stabilized platform
In a magnetically suspended inertially stabilized platform, the yaw gimbal is suspended by the magnetic bearing, which can effectively isolate the external vibrations and disturbances. However, coupling torques and disturbance torques among gimbals still exist. Therefore, based on the cross feedback...
Gespeichert in:
Veröffentlicht in: | Transactions of the Institute of Measurement and Control 2018-01, Vol.40 (2), p.565-577 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 577 |
---|---|
container_issue | 2 |
container_start_page | 565 |
container_title | Transactions of the Institute of Measurement and Control |
container_volume | 40 |
creator | Guo, Qingyuan Liu, Gang Xiang, Biao Liu, Hu Wen, Tong |
description | In a magnetically suspended inertially stabilized platform, the yaw gimbal is suspended by the magnetic bearing, which can effectively isolate the external vibrations and disturbances. However, coupling torques and disturbance torques among gimbals still exist. Therefore, based on the cross feedback compensation, the output angles of gimbals are introduced as feedback variables, and the inverse coordinate transformation matrix is designed to compensate for the coupling torques. Furthermore, a disturbance observer is applied to inhibit the disturbance torque and simulations indicate that the disturbance observer can accurately estimate the disturbance torque. Consequently, the experimental results demonstrate that the cross feedback compensation can inhabit the coupling torques, and the disturbance observer greatly suppresses the external disturbance torques and improves the angular displacement precision of gimbals. |
doi_str_mv | 10.1177/0142331216661623 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2015043458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0142331216661623</sage_id><sourcerecordid>2015043458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-f5ec22dd50ddb20809a55457bd81b0226cf848b74fa05ca77d0bbfb9c547d4713</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFb3LgOuo3feyVKKLygIUtdhnnVKmsSZyaL-elMiCIKrC-d851w4CF1juMVYyjvAjFCKCRZCYEHoCVpgJmUJVNSnaHG0y6N_ji5S2gEAY4It0NvmwxU2pDxGrTrjiuh2zuTQd0Xvi73adi4Ho9r2UKQxDa6zzhahczGHWcxKhzZ8TerQquz7uL9EZ161yV393CV6f3zYrJ7L9evTy-p-XRoKdS49d4YQazlYqwlUUCvOGZfaVlgDIcL4ilVaMq-AGyWlBa29rg1n0jKJ6RLdzL1D7D9Hl3Kz68fYTS8bApgDo4xXEwUzZWKfUnS-GWLYq3hoMDTH5Zq_y02Rco4ktXW_pf_y39nAbmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015043458</pqid></control><display><type>article</type><title>The disturbance rejection of magnetically suspended inertially stabilized platform</title><source>SAGE Complete</source><creator>Guo, Qingyuan ; Liu, Gang ; Xiang, Biao ; Liu, Hu ; Wen, Tong</creator><creatorcontrib>Guo, Qingyuan ; Liu, Gang ; Xiang, Biao ; Liu, Hu ; Wen, Tong</creatorcontrib><description>In a magnetically suspended inertially stabilized platform, the yaw gimbal is suspended by the magnetic bearing, which can effectively isolate the external vibrations and disturbances. However, coupling torques and disturbance torques among gimbals still exist. Therefore, based on the cross feedback compensation, the output angles of gimbals are introduced as feedback variables, and the inverse coordinate transformation matrix is designed to compensate for the coupling torques. Furthermore, a disturbance observer is applied to inhibit the disturbance torque and simulations indicate that the disturbance observer can accurately estimate the disturbance torque. Consequently, the experimental results demonstrate that the cross feedback compensation can inhabit the coupling torques, and the disturbance observer greatly suppresses the external disturbance torques and improves the angular displacement precision of gimbals.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/0142331216661623</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Compensation ; Coordinate transformations ; Coupling ; Disturbance observers ; Feedback ; Gimbals ; Magnetic levitation ; Torque ; Yaw</subject><ispartof>Transactions of the Institute of Measurement and Control, 2018-01, Vol.40 (2), p.565-577</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-f5ec22dd50ddb20809a55457bd81b0226cf848b74fa05ca77d0bbfb9c547d4713</citedby><cites>FETCH-LOGICAL-c309t-f5ec22dd50ddb20809a55457bd81b0226cf848b74fa05ca77d0bbfb9c547d4713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0142331216661623$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0142331216661623$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21800,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Guo, Qingyuan</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Xiang, Biao</creatorcontrib><creatorcontrib>Liu, Hu</creatorcontrib><creatorcontrib>Wen, Tong</creatorcontrib><title>The disturbance rejection of magnetically suspended inertially stabilized platform</title><title>Transactions of the Institute of Measurement and Control</title><description>In a magnetically suspended inertially stabilized platform, the yaw gimbal is suspended by the magnetic bearing, which can effectively isolate the external vibrations and disturbances. However, coupling torques and disturbance torques among gimbals still exist. Therefore, based on the cross feedback compensation, the output angles of gimbals are introduced as feedback variables, and the inverse coordinate transformation matrix is designed to compensate for the coupling torques. Furthermore, a disturbance observer is applied to inhibit the disturbance torque and simulations indicate that the disturbance observer can accurately estimate the disturbance torque. Consequently, the experimental results demonstrate that the cross feedback compensation can inhabit the coupling torques, and the disturbance observer greatly suppresses the external disturbance torques and improves the angular displacement precision of gimbals.</description><subject>Compensation</subject><subject>Coordinate transformations</subject><subject>Coupling</subject><subject>Disturbance observers</subject><subject>Feedback</subject><subject>Gimbals</subject><subject>Magnetic levitation</subject><subject>Torque</subject><subject>Yaw</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsFb3LgOuo3feyVKKLygIUtdhnnVKmsSZyaL-elMiCIKrC-d851w4CF1juMVYyjvAjFCKCRZCYEHoCVpgJmUJVNSnaHG0y6N_ji5S2gEAY4It0NvmwxU2pDxGrTrjiuh2zuTQd0Xvi73adi4Ho9r2UKQxDa6zzhahczGHWcxKhzZ8TerQquz7uL9EZ161yV393CV6f3zYrJ7L9evTy-p-XRoKdS49d4YQazlYqwlUUCvOGZfaVlgDIcL4ilVaMq-AGyWlBa29rg1n0jKJ6RLdzL1D7D9Hl3Kz68fYTS8bApgDo4xXEwUzZWKfUnS-GWLYq3hoMDTH5Zq_y02Rco4ktXW_pf_y39nAbmA</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Guo, Qingyuan</creator><creator>Liu, Gang</creator><creator>Xiang, Biao</creator><creator>Liu, Hu</creator><creator>Wen, Tong</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201801</creationdate><title>The disturbance rejection of magnetically suspended inertially stabilized platform</title><author>Guo, Qingyuan ; Liu, Gang ; Xiang, Biao ; Liu, Hu ; Wen, Tong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-f5ec22dd50ddb20809a55457bd81b0226cf848b74fa05ca77d0bbfb9c547d4713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Compensation</topic><topic>Coordinate transformations</topic><topic>Coupling</topic><topic>Disturbance observers</topic><topic>Feedback</topic><topic>Gimbals</topic><topic>Magnetic levitation</topic><topic>Torque</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Qingyuan</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Xiang, Biao</creatorcontrib><creatorcontrib>Liu, Hu</creatorcontrib><creatorcontrib>Wen, Tong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Qingyuan</au><au>Liu, Gang</au><au>Xiang, Biao</au><au>Liu, Hu</au><au>Wen, Tong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The disturbance rejection of magnetically suspended inertially stabilized platform</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2018-01</date><risdate>2018</risdate><volume>40</volume><issue>2</issue><spage>565</spage><epage>577</epage><pages>565-577</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>In a magnetically suspended inertially stabilized platform, the yaw gimbal is suspended by the magnetic bearing, which can effectively isolate the external vibrations and disturbances. However, coupling torques and disturbance torques among gimbals still exist. Therefore, based on the cross feedback compensation, the output angles of gimbals are introduced as feedback variables, and the inverse coordinate transformation matrix is designed to compensate for the coupling torques. Furthermore, a disturbance observer is applied to inhibit the disturbance torque and simulations indicate that the disturbance observer can accurately estimate the disturbance torque. Consequently, the experimental results demonstrate that the cross feedback compensation can inhabit the coupling torques, and the disturbance observer greatly suppresses the external disturbance torques and improves the angular displacement precision of gimbals.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0142331216661623</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-3312 |
ispartof | Transactions of the Institute of Measurement and Control, 2018-01, Vol.40 (2), p.565-577 |
issn | 0142-3312 1477-0369 |
language | eng |
recordid | cdi_proquest_journals_2015043458 |
source | SAGE Complete |
subjects | Compensation Coordinate transformations Coupling Disturbance observers Feedback Gimbals Magnetic levitation Torque Yaw |
title | The disturbance rejection of magnetically suspended inertially stabilized platform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20disturbance%20rejection%20of%20magnetically%20suspended%20inertially%20stabilized%20platform&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Guo,%20Qingyuan&rft.date=2018-01&rft.volume=40&rft.issue=2&rft.spage=565&rft.epage=577&rft.pages=565-577&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/0142331216661623&rft_dat=%3Cproquest_cross%3E2015043458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015043458&rft_id=info:pmid/&rft_sage_id=10.1177_0142331216661623&rfr_iscdi=true |