Saliency Detection Based Region Extraction for Pedestrian Detection System with Thermal Imageries
A robust pedestrian detection approach in thermal infrared imageries for an all-day surveillance is proposed. Firstly, the candidate regions which are likely to contain pedestrians are extracted based on a saliency detection method. Then a deep convolutional network with a multi-task loss is constru...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2018/01/01, Vol.E101.A(1), pp.306-310 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 310 |
---|---|
container_issue | 1 |
container_start_page | 306 |
container_title | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences |
container_volume | E101.A |
creator | XU, Ming YU, Xiaosheng WU, Chengdong CHEN, Dongyue |
description | A robust pedestrian detection approach in thermal infrared imageries for an all-day surveillance is proposed. Firstly, the candidate regions which are likely to contain pedestrians are extracted based on a saliency detection method. Then a deep convolutional network with a multi-task loss is constructed to recognize the pedestrians. The experimental results show the superiority of the proposed approach in pedestrian detection. |
doi_str_mv | 10.1587/transfun.E101.A.306 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2014993919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014993919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-69a491934b372d69e408dce475526bffa2547ecdabf9ffe95d5162feb84dea453</originalsourceid><addsrcrecordid>eNplkM1OwzAQhC0EEqXwBFwicU6wYzuJj6UUKKoEouVsOc66TZWfYruCvj2JAhUSp9Wu5pvdHYSuCY4Iz9Jbb1XjzL6JZgSTaBJRnJygEUkZDwml6SkaYUGSMOM4O0cXzm0xJllM2AippapKaPQhuAcP2pdtE9wpB0XwBuu-mX115sPctDZ4hQKct6Vq_gDLg_NQB5-l3wSrDdhaVcG8VmuwJbhLdGZU5eDqp47R-8NsNX0KFy-P8-lkEWpGsA8ToZgggrKcpnGRCGA4KzSwlPM4yY1RMWcp6ELlRhgDghecJLGBPGMFKMbpGN0Mvjvbfuy7I-W23dumWyljTJgQtLcfIzqotG2ds2Dkzpa1sgdJsOyzlL9Zyj5LOZFdlh31PFBb57u3joyyvtQV_GPIH_go0htlJTT0G3WQhp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014993919</pqid></control><display><type>article</type><title>Saliency Detection Based Region Extraction for Pedestrian Detection System with Thermal Imageries</title><source>J-STAGE Free</source><creator>XU, Ming ; YU, Xiaosheng ; WU, Chengdong ; CHEN, Dongyue</creator><creatorcontrib>XU, Ming ; YU, Xiaosheng ; WU, Chengdong ; CHEN, Dongyue</creatorcontrib><description>A robust pedestrian detection approach in thermal infrared imageries for an all-day surveillance is proposed. Firstly, the candidate regions which are likely to contain pedestrians are extracted based on a saliency detection method. Then a deep convolutional network with a multi-task loss is constructed to recognize the pedestrians. The experimental results show the superiority of the proposed approach in pedestrian detection.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.E101.A.306</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>deep convolutional network ; pedestrian detection ; Pedestrians ; Salience ; saliency detection ; thermal infrared imageries</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2018/01/01, Vol.E101.A(1), pp.306-310</ispartof><rights>2018 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-69a491934b372d69e408dce475526bffa2547ecdabf9ffe95d5162feb84dea453</citedby><cites>FETCH-LOGICAL-c410t-69a491934b372d69e408dce475526bffa2547ecdabf9ffe95d5162feb84dea453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1879,4012,27906,27907,27908</link.rule.ids></links><search><creatorcontrib>XU, Ming</creatorcontrib><creatorcontrib>YU, Xiaosheng</creatorcontrib><creatorcontrib>WU, Chengdong</creatorcontrib><creatorcontrib>CHEN, Dongyue</creatorcontrib><title>Saliency Detection Based Region Extraction for Pedestrian Detection System with Thermal Imageries</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>A robust pedestrian detection approach in thermal infrared imageries for an all-day surveillance is proposed. Firstly, the candidate regions which are likely to contain pedestrians are extracted based on a saliency detection method. Then a deep convolutional network with a multi-task loss is constructed to recognize the pedestrians. The experimental results show the superiority of the proposed approach in pedestrian detection.</description><subject>deep convolutional network</subject><subject>pedestrian detection</subject><subject>Pedestrians</subject><subject>Salience</subject><subject>saliency detection</subject><subject>thermal infrared imageries</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNplkM1OwzAQhC0EEqXwBFwicU6wYzuJj6UUKKoEouVsOc66TZWfYruCvj2JAhUSp9Wu5pvdHYSuCY4Iz9Jbb1XjzL6JZgSTaBJRnJygEUkZDwml6SkaYUGSMOM4O0cXzm0xJllM2AippapKaPQhuAcP2pdtE9wpB0XwBuu-mX115sPctDZ4hQKct6Vq_gDLg_NQB5-l3wSrDdhaVcG8VmuwJbhLdGZU5eDqp47R-8NsNX0KFy-P8-lkEWpGsA8ToZgggrKcpnGRCGA4KzSwlPM4yY1RMWcp6ELlRhgDghecJLGBPGMFKMbpGN0Mvjvbfuy7I-W23dumWyljTJgQtLcfIzqotG2ds2Dkzpa1sgdJsOyzlL9Zyj5LOZFdlh31PFBb57u3joyyvtQV_GPIH_go0htlJTT0G3WQhp0</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>XU, Ming</creator><creator>YU, Xiaosheng</creator><creator>WU, Chengdong</creator><creator>CHEN, Dongyue</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180101</creationdate><title>Saliency Detection Based Region Extraction for Pedestrian Detection System with Thermal Imageries</title><author>XU, Ming ; YU, Xiaosheng ; WU, Chengdong ; CHEN, Dongyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-69a491934b372d69e408dce475526bffa2547ecdabf9ffe95d5162feb84dea453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>deep convolutional network</topic><topic>pedestrian detection</topic><topic>Pedestrians</topic><topic>Salience</topic><topic>saliency detection</topic><topic>thermal infrared imageries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>XU, Ming</creatorcontrib><creatorcontrib>YU, Xiaosheng</creatorcontrib><creatorcontrib>WU, Chengdong</creatorcontrib><creatorcontrib>CHEN, Dongyue</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>XU, Ming</au><au>YU, Xiaosheng</au><au>WU, Chengdong</au><au>CHEN, Dongyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saliency Detection Based Region Extraction for Pedestrian Detection System with Thermal Imageries</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>E101.A</volume><issue>1</issue><spage>306</spage><epage>310</epage><pages>306-310</pages><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>A robust pedestrian detection approach in thermal infrared imageries for an all-day surveillance is proposed. Firstly, the candidate regions which are likely to contain pedestrians are extracted based on a saliency detection method. Then a deep convolutional network with a multi-task loss is constructed to recognize the pedestrians. The experimental results show the superiority of the proposed approach in pedestrian detection.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.E101.A.306</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8508 |
ispartof | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2018/01/01, Vol.E101.A(1), pp.306-310 |
issn | 0916-8508 1745-1337 |
language | eng |
recordid | cdi_proquest_journals_2014993919 |
source | J-STAGE Free |
subjects | deep convolutional network pedestrian detection Pedestrians Salience saliency detection thermal infrared imageries |
title | Saliency Detection Based Region Extraction for Pedestrian Detection System with Thermal Imageries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A48%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saliency%20Detection%20Based%20Region%20Extraction%20for%20Pedestrian%20Detection%20System%20with%20Thermal%20Imageries&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=XU,%20Ming&rft.date=2018-01-01&rft.volume=E101.A&rft.issue=1&rft.spage=306&rft.epage=310&rft.pages=306-310&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.E101.A.306&rft_dat=%3Cproquest_cross%3E2014993919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014993919&rft_id=info:pmid/&rfr_iscdi=true |