Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater
Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m 2 . The heat pipe is fabricated from aluminium and is equipped with rectangular fin for e...
Gespeichert in:
Veröffentlicht in: | Heat and mass transfer 2018-04, Vol.54 (4), p.985-997 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 997 |
---|---|
container_issue | 4 |
container_start_page | 985 |
container_title | Heat and mass transfer |
container_volume | 54 |
creator | Arya, A. Sarafraz, M. M. Shahmiri, S. Madani, S. A. H. Nikkhah, V. Nakhjavani, S. M. |
description | Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m
2
. The heat pipe is fabricated from aluminium and is equipped with rectangular fin for efficient cooling of condenser section. Inside the heat pipe, a screen mesh was inserted as a wick structure to facilitate the capillary action of working fluid. Influence of different operating parameters such as heat flux, mass concentration of carbon nanotubes and filling ratio of working fluid on thermal performance of heat pipe and its thermal resistance are investigated. Results showed that with an increase in heat flux, the heat transfer coefficient in evaporator section of the heat pipe increases. For filling ratio, however, there is an optimum value, which was 0.8 for the test heat pipe. In addition, CNT/water enhanced the heat transfer coefficient up to 40% over the deionized water. Carbon nanotubes intensified the thermal performance of wick structure by creating a fouling layer on screen mesh structure, which changes the contact angle of liquid with the surface, intensifying the capillary forces. |
doi_str_mv | 10.1007/s00231-017-2201-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2014751350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014751350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-33777c1ae2a34dba65992ecf0a1bb7a8bd815403578444eff2446cacabdcbc063</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczSTZDftUcQvKHip5zCbJt2t62ZNtlTv_nDTruDJy8wE3veBPIRcAr8GzvVN4lxIYBw0E4IDK4_IBJQUDGAGx2TC50ozrQBOyVlKm5wulZAT8r2sXXzHlvYu-pCvzjqKHbZfqUk0eIrUtzjQ2uXRN72juxDfmm5Nd81QU4uxCh3tsAvDtnJsh4OLh6dvt82KZiS1IbT7wgFWN-t6hOXA5-Fy8ZyceGyTu_jdU_L6cL-8e2KLl8fnu9sFsxLKgUmptbaATqBUqwrLYj4XznqOUFUaZ9VqBoXistAzpZTzXihVWrRYrWxleSmn5Grk9jF8bF0azCZsY_5sMtmZ0gXIgucUjCkbQ0rRedPH5h3jlwFu9rLNKNtk2WYv2-zJYuyknO3WLv6R_y_9ACSKg9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014751350</pqid></control><display><type>article</type><title>Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater</title><source>SpringerLink Journals</source><creator>Arya, A. ; Sarafraz, M. M. ; Shahmiri, S. ; Madani, S. A. H. ; Nikkhah, V. ; Nakhjavani, S. M.</creator><creatorcontrib>Arya, A. ; Sarafraz, M. M. ; Shahmiri, S. ; Madani, S. A. H. ; Nikkhah, V. ; Nakhjavani, S. M.</creatorcontrib><description>Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m
2
. The heat pipe is fabricated from aluminium and is equipped with rectangular fin for efficient cooling of condenser section. Inside the heat pipe, a screen mesh was inserted as a wick structure to facilitate the capillary action of working fluid. Influence of different operating parameters such as heat flux, mass concentration of carbon nanotubes and filling ratio of working fluid on thermal performance of heat pipe and its thermal resistance are investigated. Results showed that with an increase in heat flux, the heat transfer coefficient in evaporator section of the heat pipe increases. For filling ratio, however, there is an optimum value, which was 0.8 for the test heat pipe. In addition, CNT/water enhanced the heat transfer coefficient up to 40% over the deionized water. Carbon nanotubes intensified the thermal performance of wick structure by creating a fouling layer on screen mesh structure, which changes the contact angle of liquid with the surface, intensifying the capillary forces.</description><identifier>ISSN: 0947-7411</identifier><identifier>EISSN: 1432-1181</identifier><identifier>DOI: 10.1007/s00231-017-2201-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum ; Carbon ; Carbon nanotubes ; Contact angle ; Cooling ; Deionization ; Engineering ; Engineering Thermodynamics ; Heat ; Heat and Mass Transfer ; Heat flux ; Heat pipes ; Heat transfer coefficients ; Industrial Chemistry/Chemical Engineering ; Nanofluids ; Nanotubes ; Original ; Thermal resistance ; Thermodynamics ; Working fluids</subject><ispartof>Heat and mass transfer, 2018-04, Vol.54 (4), p.985-997</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-33777c1ae2a34dba65992ecf0a1bb7a8bd815403578444eff2446cacabdcbc063</citedby><cites>FETCH-LOGICAL-c316t-33777c1ae2a34dba65992ecf0a1bb7a8bd815403578444eff2446cacabdcbc063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00231-017-2201-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00231-017-2201-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Arya, A.</creatorcontrib><creatorcontrib>Sarafraz, M. M.</creatorcontrib><creatorcontrib>Shahmiri, S.</creatorcontrib><creatorcontrib>Madani, S. A. H.</creatorcontrib><creatorcontrib>Nikkhah, V.</creatorcontrib><creatorcontrib>Nakhjavani, S. M.</creatorcontrib><title>Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater</title><title>Heat and mass transfer</title><addtitle>Heat Mass Transfer</addtitle><description>Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m
2
. The heat pipe is fabricated from aluminium and is equipped with rectangular fin for efficient cooling of condenser section. Inside the heat pipe, a screen mesh was inserted as a wick structure to facilitate the capillary action of working fluid. Influence of different operating parameters such as heat flux, mass concentration of carbon nanotubes and filling ratio of working fluid on thermal performance of heat pipe and its thermal resistance are investigated. Results showed that with an increase in heat flux, the heat transfer coefficient in evaporator section of the heat pipe increases. For filling ratio, however, there is an optimum value, which was 0.8 for the test heat pipe. In addition, CNT/water enhanced the heat transfer coefficient up to 40% over the deionized water. Carbon nanotubes intensified the thermal performance of wick structure by creating a fouling layer on screen mesh structure, which changes the contact angle of liquid with the surface, intensifying the capillary forces.</description><subject>Aluminum</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Contact angle</subject><subject>Cooling</subject><subject>Deionization</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Heat</subject><subject>Heat and Mass Transfer</subject><subject>Heat flux</subject><subject>Heat pipes</subject><subject>Heat transfer coefficients</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Nanofluids</subject><subject>Nanotubes</subject><subject>Original</subject><subject>Thermal resistance</subject><subject>Thermodynamics</subject><subject>Working fluids</subject><issn>0947-7411</issn><issn>1432-1181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczSTZDftUcQvKHip5zCbJt2t62ZNtlTv_nDTruDJy8wE3veBPIRcAr8GzvVN4lxIYBw0E4IDK4_IBJQUDGAGx2TC50ozrQBOyVlKm5wulZAT8r2sXXzHlvYu-pCvzjqKHbZfqUk0eIrUtzjQ2uXRN72juxDfmm5Nd81QU4uxCh3tsAvDtnJsh4OLh6dvt82KZiS1IbT7wgFWN-t6hOXA5-Fy8ZyceGyTu_jdU_L6cL-8e2KLl8fnu9sFsxLKgUmptbaATqBUqwrLYj4XznqOUFUaZ9VqBoXistAzpZTzXihVWrRYrWxleSmn5Grk9jF8bF0azCZsY_5sMtmZ0gXIgucUjCkbQ0rRedPH5h3jlwFu9rLNKNtk2WYv2-zJYuyknO3WLv6R_y_9ACSKg9Q</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Arya, A.</creator><creator>Sarafraz, M. M.</creator><creator>Shahmiri, S.</creator><creator>Madani, S. A. H.</creator><creator>Nikkhah, V.</creator><creator>Nakhjavani, S. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater</title><author>Arya, A. ; Sarafraz, M. M. ; Shahmiri, S. ; Madani, S. A. H. ; Nikkhah, V. ; Nakhjavani, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-33777c1ae2a34dba65992ecf0a1bb7a8bd815403578444eff2446cacabdcbc063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Contact angle</topic><topic>Cooling</topic><topic>Deionization</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Heat</topic><topic>Heat and Mass Transfer</topic><topic>Heat flux</topic><topic>Heat pipes</topic><topic>Heat transfer coefficients</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Nanofluids</topic><topic>Nanotubes</topic><topic>Original</topic><topic>Thermal resistance</topic><topic>Thermodynamics</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arya, A.</creatorcontrib><creatorcontrib>Sarafraz, M. M.</creatorcontrib><creatorcontrib>Shahmiri, S.</creatorcontrib><creatorcontrib>Madani, S. A. H.</creatorcontrib><creatorcontrib>Nikkhah, V.</creatorcontrib><creatorcontrib>Nakhjavani, S. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arya, A.</au><au>Sarafraz, M. M.</au><au>Shahmiri, S.</au><au>Madani, S. A. H.</au><au>Nikkhah, V.</au><au>Nakhjavani, S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater</atitle><jtitle>Heat and mass transfer</jtitle><stitle>Heat Mass Transfer</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>54</volume><issue>4</issue><spage>985</spage><epage>997</epage><pages>985-997</pages><issn>0947-7411</issn><eissn>1432-1181</eissn><abstract>Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m
2
. The heat pipe is fabricated from aluminium and is equipped with rectangular fin for efficient cooling of condenser section. Inside the heat pipe, a screen mesh was inserted as a wick structure to facilitate the capillary action of working fluid. Influence of different operating parameters such as heat flux, mass concentration of carbon nanotubes and filling ratio of working fluid on thermal performance of heat pipe and its thermal resistance are investigated. Results showed that with an increase in heat flux, the heat transfer coefficient in evaporator section of the heat pipe increases. For filling ratio, however, there is an optimum value, which was 0.8 for the test heat pipe. In addition, CNT/water enhanced the heat transfer coefficient up to 40% over the deionized water. Carbon nanotubes intensified the thermal performance of wick structure by creating a fouling layer on screen mesh structure, which changes the contact angle of liquid with the surface, intensifying the capillary forces.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00231-017-2201-6</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7411 |
ispartof | Heat and mass transfer, 2018-04, Vol.54 (4), p.985-997 |
issn | 0947-7411 1432-1181 |
language | eng |
recordid | cdi_proquest_journals_2014751350 |
source | SpringerLink Journals |
subjects | Aluminum Carbon Carbon nanotubes Contact angle Cooling Deionization Engineering Engineering Thermodynamics Heat Heat and Mass Transfer Heat flux Heat pipes Heat transfer coefficients Industrial Chemistry/Chemical Engineering Nanofluids Nanotubes Original Thermal resistance Thermodynamics Working fluids |
title | Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T16%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20performance%20analysis%20of%20a%20flat%20heat%20pipe%20working%20with%20carbon%20nanotube-water%20nanofluid%20for%20cooling%20of%20a%20high%20heat%20flux%20heater&rft.jtitle=Heat%20and%20mass%20transfer&rft.au=Arya,%20A.&rft.date=2018-04-01&rft.volume=54&rft.issue=4&rft.spage=985&rft.epage=997&rft.pages=985-997&rft.issn=0947-7411&rft.eissn=1432-1181&rft_id=info:doi/10.1007/s00231-017-2201-6&rft_dat=%3Cproquest_cross%3E2014751350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014751350&rft_id=info:pmid/&rfr_iscdi=true |