Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater

Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m 2 . The heat pipe is fabricated from aluminium and is equipped with rectangular fin for e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat and mass transfer 2018-04, Vol.54 (4), p.985-997
Hauptverfasser: Arya, A., Sarafraz, M. M., Shahmiri, S., Madani, S. A. H., Nikkhah, V., Nakhjavani, S. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 997
container_issue 4
container_start_page 985
container_title Heat and mass transfer
container_volume 54
creator Arya, A.
Sarafraz, M. M.
Shahmiri, S.
Madani, S. A. H.
Nikkhah, V.
Nakhjavani, S. M.
description Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m 2 . The heat pipe is fabricated from aluminium and is equipped with rectangular fin for efficient cooling of condenser section. Inside the heat pipe, a screen mesh was inserted as a wick structure to facilitate the capillary action of working fluid. Influence of different operating parameters such as heat flux, mass concentration of carbon nanotubes and filling ratio of working fluid on thermal performance of heat pipe and its thermal resistance are investigated. Results showed that with an increase in heat flux, the heat transfer coefficient in evaporator section of the heat pipe increases. For filling ratio, however, there is an optimum value, which was 0.8 for the test heat pipe. In addition, CNT/water enhanced the heat transfer coefficient up to 40% over the deionized water. Carbon nanotubes intensified the thermal performance of wick structure by creating a fouling layer on screen mesh structure, which changes the contact angle of liquid with the surface, intensifying the capillary forces.
doi_str_mv 10.1007/s00231-017-2201-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2014751350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014751350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-33777c1ae2a34dba65992ecf0a1bb7a8bd815403578444eff2446cacabdcbc063</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczSTZDftUcQvKHip5zCbJt2t62ZNtlTv_nDTruDJy8wE3veBPIRcAr8GzvVN4lxIYBw0E4IDK4_IBJQUDGAGx2TC50ozrQBOyVlKm5wulZAT8r2sXXzHlvYu-pCvzjqKHbZfqUk0eIrUtzjQ2uXRN72juxDfmm5Nd81QU4uxCh3tsAvDtnJsh4OLh6dvt82KZiS1IbT7wgFWN-t6hOXA5-Fy8ZyceGyTu_jdU_L6cL-8e2KLl8fnu9sFsxLKgUmptbaATqBUqwrLYj4XznqOUFUaZ9VqBoXistAzpZTzXihVWrRYrWxleSmn5Grk9jF8bF0azCZsY_5sMtmZ0gXIgucUjCkbQ0rRedPH5h3jlwFu9rLNKNtk2WYv2-zJYuyknO3WLv6R_y_9ACSKg9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014751350</pqid></control><display><type>article</type><title>Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater</title><source>SpringerLink Journals</source><creator>Arya, A. ; Sarafraz, M. M. ; Shahmiri, S. ; Madani, S. A. H. ; Nikkhah, V. ; Nakhjavani, S. M.</creator><creatorcontrib>Arya, A. ; Sarafraz, M. M. ; Shahmiri, S. ; Madani, S. A. H. ; Nikkhah, V. ; Nakhjavani, S. M.</creatorcontrib><description>Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m 2 . The heat pipe is fabricated from aluminium and is equipped with rectangular fin for efficient cooling of condenser section. Inside the heat pipe, a screen mesh was inserted as a wick structure to facilitate the capillary action of working fluid. Influence of different operating parameters such as heat flux, mass concentration of carbon nanotubes and filling ratio of working fluid on thermal performance of heat pipe and its thermal resistance are investigated. Results showed that with an increase in heat flux, the heat transfer coefficient in evaporator section of the heat pipe increases. For filling ratio, however, there is an optimum value, which was 0.8 for the test heat pipe. In addition, CNT/water enhanced the heat transfer coefficient up to 40% over the deionized water. Carbon nanotubes intensified the thermal performance of wick structure by creating a fouling layer on screen mesh structure, which changes the contact angle of liquid with the surface, intensifying the capillary forces.</description><identifier>ISSN: 0947-7411</identifier><identifier>EISSN: 1432-1181</identifier><identifier>DOI: 10.1007/s00231-017-2201-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum ; Carbon ; Carbon nanotubes ; Contact angle ; Cooling ; Deionization ; Engineering ; Engineering Thermodynamics ; Heat ; Heat and Mass Transfer ; Heat flux ; Heat pipes ; Heat transfer coefficients ; Industrial Chemistry/Chemical Engineering ; Nanofluids ; Nanotubes ; Original ; Thermal resistance ; Thermodynamics ; Working fluids</subject><ispartof>Heat and mass transfer, 2018-04, Vol.54 (4), p.985-997</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-33777c1ae2a34dba65992ecf0a1bb7a8bd815403578444eff2446cacabdcbc063</citedby><cites>FETCH-LOGICAL-c316t-33777c1ae2a34dba65992ecf0a1bb7a8bd815403578444eff2446cacabdcbc063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00231-017-2201-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00231-017-2201-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Arya, A.</creatorcontrib><creatorcontrib>Sarafraz, M. M.</creatorcontrib><creatorcontrib>Shahmiri, S.</creatorcontrib><creatorcontrib>Madani, S. A. H.</creatorcontrib><creatorcontrib>Nikkhah, V.</creatorcontrib><creatorcontrib>Nakhjavani, S. M.</creatorcontrib><title>Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater</title><title>Heat and mass transfer</title><addtitle>Heat Mass Transfer</addtitle><description>Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m 2 . The heat pipe is fabricated from aluminium and is equipped with rectangular fin for efficient cooling of condenser section. Inside the heat pipe, a screen mesh was inserted as a wick structure to facilitate the capillary action of working fluid. Influence of different operating parameters such as heat flux, mass concentration of carbon nanotubes and filling ratio of working fluid on thermal performance of heat pipe and its thermal resistance are investigated. Results showed that with an increase in heat flux, the heat transfer coefficient in evaporator section of the heat pipe increases. For filling ratio, however, there is an optimum value, which was 0.8 for the test heat pipe. In addition, CNT/water enhanced the heat transfer coefficient up to 40% over the deionized water. Carbon nanotubes intensified the thermal performance of wick structure by creating a fouling layer on screen mesh structure, which changes the contact angle of liquid with the surface, intensifying the capillary forces.</description><subject>Aluminum</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Contact angle</subject><subject>Cooling</subject><subject>Deionization</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Heat</subject><subject>Heat and Mass Transfer</subject><subject>Heat flux</subject><subject>Heat pipes</subject><subject>Heat transfer coefficients</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Nanofluids</subject><subject>Nanotubes</subject><subject>Original</subject><subject>Thermal resistance</subject><subject>Thermodynamics</subject><subject>Working fluids</subject><issn>0947-7411</issn><issn>1432-1181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczSTZDftUcQvKHip5zCbJt2t62ZNtlTv_nDTruDJy8wE3veBPIRcAr8GzvVN4lxIYBw0E4IDK4_IBJQUDGAGx2TC50ozrQBOyVlKm5wulZAT8r2sXXzHlvYu-pCvzjqKHbZfqUk0eIrUtzjQ2uXRN72juxDfmm5Nd81QU4uxCh3tsAvDtnJsh4OLh6dvt82KZiS1IbT7wgFWN-t6hOXA5-Fy8ZyceGyTu_jdU_L6cL-8e2KLl8fnu9sFsxLKgUmptbaATqBUqwrLYj4XznqOUFUaZ9VqBoXistAzpZTzXihVWrRYrWxleSmn5Grk9jF8bF0azCZsY_5sMtmZ0gXIgucUjCkbQ0rRedPH5h3jlwFu9rLNKNtk2WYv2-zJYuyknO3WLv6R_y_9ACSKg9Q</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Arya, A.</creator><creator>Sarafraz, M. M.</creator><creator>Shahmiri, S.</creator><creator>Madani, S. A. H.</creator><creator>Nikkhah, V.</creator><creator>Nakhjavani, S. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater</title><author>Arya, A. ; Sarafraz, M. M. ; Shahmiri, S. ; Madani, S. A. H. ; Nikkhah, V. ; Nakhjavani, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-33777c1ae2a34dba65992ecf0a1bb7a8bd815403578444eff2446cacabdcbc063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Contact angle</topic><topic>Cooling</topic><topic>Deionization</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Heat</topic><topic>Heat and Mass Transfer</topic><topic>Heat flux</topic><topic>Heat pipes</topic><topic>Heat transfer coefficients</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Nanofluids</topic><topic>Nanotubes</topic><topic>Original</topic><topic>Thermal resistance</topic><topic>Thermodynamics</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arya, A.</creatorcontrib><creatorcontrib>Sarafraz, M. M.</creatorcontrib><creatorcontrib>Shahmiri, S.</creatorcontrib><creatorcontrib>Madani, S. A. H.</creatorcontrib><creatorcontrib>Nikkhah, V.</creatorcontrib><creatorcontrib>Nakhjavani, S. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arya, A.</au><au>Sarafraz, M. M.</au><au>Shahmiri, S.</au><au>Madani, S. A. H.</au><au>Nikkhah, V.</au><au>Nakhjavani, S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater</atitle><jtitle>Heat and mass transfer</jtitle><stitle>Heat Mass Transfer</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>54</volume><issue>4</issue><spage>985</spage><epage>997</epage><pages>985-997</pages><issn>0947-7411</issn><eissn>1432-1181</eissn><abstract>Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m 2 . The heat pipe is fabricated from aluminium and is equipped with rectangular fin for efficient cooling of condenser section. Inside the heat pipe, a screen mesh was inserted as a wick structure to facilitate the capillary action of working fluid. Influence of different operating parameters such as heat flux, mass concentration of carbon nanotubes and filling ratio of working fluid on thermal performance of heat pipe and its thermal resistance are investigated. Results showed that with an increase in heat flux, the heat transfer coefficient in evaporator section of the heat pipe increases. For filling ratio, however, there is an optimum value, which was 0.8 for the test heat pipe. In addition, CNT/water enhanced the heat transfer coefficient up to 40% over the deionized water. Carbon nanotubes intensified the thermal performance of wick structure by creating a fouling layer on screen mesh structure, which changes the contact angle of liquid with the surface, intensifying the capillary forces.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00231-017-2201-6</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7411
ispartof Heat and mass transfer, 2018-04, Vol.54 (4), p.985-997
issn 0947-7411
1432-1181
language eng
recordid cdi_proquest_journals_2014751350
source SpringerLink Journals
subjects Aluminum
Carbon
Carbon nanotubes
Contact angle
Cooling
Deionization
Engineering
Engineering Thermodynamics
Heat
Heat and Mass Transfer
Heat flux
Heat pipes
Heat transfer coefficients
Industrial Chemistry/Chemical Engineering
Nanofluids
Nanotubes
Original
Thermal resistance
Thermodynamics
Working fluids
title Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T16%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20performance%20analysis%20of%20a%20flat%20heat%20pipe%20working%20with%20carbon%20nanotube-water%20nanofluid%20for%20cooling%20of%20a%20high%20heat%20flux%20heater&rft.jtitle=Heat%20and%20mass%20transfer&rft.au=Arya,%20A.&rft.date=2018-04-01&rft.volume=54&rft.issue=4&rft.spage=985&rft.epage=997&rft.pages=985-997&rft.issn=0947-7411&rft.eissn=1432-1181&rft_id=info:doi/10.1007/s00231-017-2201-6&rft_dat=%3Cproquest_cross%3E2014751350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014751350&rft_id=info:pmid/&rfr_iscdi=true