Nanostructured all-solid-state supercapacitors based on NASICON-type Li1.4Al0.4Ti1.6(PO4)3 electrolyte

Lithium aluminum titanium phosphate (LATP), a NASICON-type (structure of Na 1 + x Zr 2 Si x P 3 − x O 12 , 0 

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state electrochemistry 2018, Vol.22 (4), p.1055-1061
Hauptverfasser: Liao, Guangyue, Mahrholz, Thorsten, Geier, Sebastian, Wierach, Peter, Wiedemann, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1061
container_issue 4
container_start_page 1055
container_title Journal of solid state electrochemistry
container_volume 22
creator Liao, Guangyue
Mahrholz, Thorsten
Geier, Sebastian
Wierach, Peter
Wiedemann, Martin
description Lithium aluminum titanium phosphate (LATP), a NASICON-type (structure of Na 1 + x Zr 2 Si x P 3 − x O 12 , 0 
doi_str_mv 10.1007/s10008-017-3849-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2014739972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014739972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270z-81eace63bb5a9c0d9511456bb98e87fd5092588a6f748666f68888a420078b3c3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9giscDgYseOP8aqolCpapEos-U4DkoV4mA7Q_vrcQkSEzfc3fC8d9IDwC1GM4wQfwypIwER5pAIKuHxDEwwJQQizsT5z55DQYW4BFch7FECGUYTUG9050L0g4mDt1Wm2xYG1zYVDFFHm4Wht97oXpsmOh-yUodEuS7bzN9Wi-0GxkNvs3WDZ3TeohndpY3dv27pA8lsa030rj1Eew0uat0Ge_M7p-B9-bRbvMD19nm1mK-hyTk6QoGtNpaRsiy0NKiSBca0YGUphRW8rgok80IIzWpOBWOsZiKVpnlSIEpiyBTcjXd7774GG6Lau8F36aXKEaacSMnzROGRMt6F4G2tet98an9QGKmTTjXqVMmSOulUx5TJx0xIbPdh_d_l_0PfdR92TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014739972</pqid></control><display><type>article</type><title>Nanostructured all-solid-state supercapacitors based on NASICON-type Li1.4Al0.4Ti1.6(PO4)3 electrolyte</title><source>SpringerLink Journals</source><creator>Liao, Guangyue ; Mahrholz, Thorsten ; Geier, Sebastian ; Wierach, Peter ; Wiedemann, Martin</creator><creatorcontrib>Liao, Guangyue ; Mahrholz, Thorsten ; Geier, Sebastian ; Wierach, Peter ; Wiedemann, Martin</creatorcontrib><description>Lithium aluminum titanium phosphate (LATP), a NASICON-type (structure of Na 1 + x Zr 2 Si x P 3 − x O 12 , 0 &lt;  x  &lt; 3) lithium ionic conductor, possesses high ionic conductivity at ambient temperature and sufficiently high electrochemical stability compared to well-established types of solid electrolytes. This ensures LATP being potentially used as solid electrolyte for all-solid-state supercapacitors. In the pure ionic conductors like LATP, the stoichiometry change under work potential for energy storage is not possible. Therefore, it is essential to produce heterophase contacts, at which the compositional changes could occur. Carbon nanotube (CNT), an excellent electronical conductor, has been consequently mixed with LATP. The all-solid-state supercapacitors with this LATP/CNT mixture have been manufactured in sandwich structure—two mixture layers separated by a pure LATP layer as separator. And the impedance behavior as well as supercapacitance dependent on various CNT weight percentages (1–7.5%) has been investigated by electrochemical impedance spectroscopy and cyclic voltammetry. The results clearly prove that electrical double layer could be formed at the heterophase contacts indicating the supercapacitance behavior of the device, especially when the high contents of CNTs are used. The capacitance of specimen without CNT shows only a value of 0.52 mF/cm 3 , which is strongly promoted to 11.59 mF/cm 3 when CNT content increases to 7.5%.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-017-3849-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum ; Ambient temperature ; Analytical Chemistry ; Carbon nanotubes ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Conductors ; Electric contacts ; Electrical resistivity ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrolytes ; Energy Storage ; Ion currents ; Lithium ; Molten salt electrolytes ; Nanotubes ; Original Paper ; Physical Chemistry ; Sandwich structures ; Solid electrolytes ; Solid state ; Stoichiometry ; Supercapacitors</subject><ispartof>Journal of solid state electrochemistry, 2018, Vol.22 (4), p.1055-1061</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270z-81eace63bb5a9c0d9511456bb98e87fd5092588a6f748666f68888a420078b3c3</citedby><cites>FETCH-LOGICAL-c270z-81eace63bb5a9c0d9511456bb98e87fd5092588a6f748666f68888a420078b3c3</cites><orcidid>0000-0002-5464-3242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-017-3849-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-017-3849-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Liao, Guangyue</creatorcontrib><creatorcontrib>Mahrholz, Thorsten</creatorcontrib><creatorcontrib>Geier, Sebastian</creatorcontrib><creatorcontrib>Wierach, Peter</creatorcontrib><creatorcontrib>Wiedemann, Martin</creatorcontrib><title>Nanostructured all-solid-state supercapacitors based on NASICON-type Li1.4Al0.4Ti1.6(PO4)3 electrolyte</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>Lithium aluminum titanium phosphate (LATP), a NASICON-type (structure of Na 1 + x Zr 2 Si x P 3 − x O 12 , 0 &lt;  x  &lt; 3) lithium ionic conductor, possesses high ionic conductivity at ambient temperature and sufficiently high electrochemical stability compared to well-established types of solid electrolytes. This ensures LATP being potentially used as solid electrolyte for all-solid-state supercapacitors. In the pure ionic conductors like LATP, the stoichiometry change under work potential for energy storage is not possible. Therefore, it is essential to produce heterophase contacts, at which the compositional changes could occur. Carbon nanotube (CNT), an excellent electronical conductor, has been consequently mixed with LATP. The all-solid-state supercapacitors with this LATP/CNT mixture have been manufactured in sandwich structure—two mixture layers separated by a pure LATP layer as separator. And the impedance behavior as well as supercapacitance dependent on various CNT weight percentages (1–7.5%) has been investigated by electrochemical impedance spectroscopy and cyclic voltammetry. The results clearly prove that electrical double layer could be formed at the heterophase contacts indicating the supercapacitance behavior of the device, especially when the high contents of CNTs are used. The capacitance of specimen without CNT shows only a value of 0.52 mF/cm 3 , which is strongly promoted to 11.59 mF/cm 3 when CNT content increases to 7.5%.</description><subject>Aluminum</subject><subject>Ambient temperature</subject><subject>Analytical Chemistry</subject><subject>Carbon nanotubes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Conductors</subject><subject>Electric contacts</subject><subject>Electrical resistivity</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Energy Storage</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Molten salt electrolytes</subject><subject>Nanotubes</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Sandwich structures</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><subject>Stoichiometry</subject><subject>Supercapacitors</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqXwA9giscDgYseOP8aqolCpapEos-U4DkoV4mA7Q_vrcQkSEzfc3fC8d9IDwC1GM4wQfwypIwER5pAIKuHxDEwwJQQizsT5z55DQYW4BFch7FECGUYTUG9050L0g4mDt1Wm2xYG1zYVDFFHm4Wht97oXpsmOh-yUodEuS7bzN9Wi-0GxkNvs3WDZ3TeohndpY3dv27pA8lsa030rj1Eew0uat0Ge_M7p-B9-bRbvMD19nm1mK-hyTk6QoGtNpaRsiy0NKiSBca0YGUphRW8rgok80IIzWpOBWOsZiKVpnlSIEpiyBTcjXd7774GG6Lau8F36aXKEaacSMnzROGRMt6F4G2tet98an9QGKmTTjXqVMmSOulUx5TJx0xIbPdh_d_l_0PfdR92TQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Liao, Guangyue</creator><creator>Mahrholz, Thorsten</creator><creator>Geier, Sebastian</creator><creator>Wierach, Peter</creator><creator>Wiedemann, Martin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5464-3242</orcidid></search><sort><creationdate>2018</creationdate><title>Nanostructured all-solid-state supercapacitors based on NASICON-type Li1.4Al0.4Ti1.6(PO4)3 electrolyte</title><author>Liao, Guangyue ; Mahrholz, Thorsten ; Geier, Sebastian ; Wierach, Peter ; Wiedemann, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270z-81eace63bb5a9c0d9511456bb98e87fd5092588a6f748666f68888a420078b3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Ambient temperature</topic><topic>Analytical Chemistry</topic><topic>Carbon nanotubes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Conductors</topic><topic>Electric contacts</topic><topic>Electrical resistivity</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Energy Storage</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Molten salt electrolytes</topic><topic>Nanotubes</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Sandwich structures</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><topic>Stoichiometry</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Guangyue</creatorcontrib><creatorcontrib>Mahrholz, Thorsten</creatorcontrib><creatorcontrib>Geier, Sebastian</creatorcontrib><creatorcontrib>Wierach, Peter</creatorcontrib><creatorcontrib>Wiedemann, Martin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Guangyue</au><au>Mahrholz, Thorsten</au><au>Geier, Sebastian</au><au>Wierach, Peter</au><au>Wiedemann, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructured all-solid-state supercapacitors based on NASICON-type Li1.4Al0.4Ti1.6(PO4)3 electrolyte</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2018</date><risdate>2018</risdate><volume>22</volume><issue>4</issue><spage>1055</spage><epage>1061</epage><pages>1055-1061</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>Lithium aluminum titanium phosphate (LATP), a NASICON-type (structure of Na 1 + x Zr 2 Si x P 3 − x O 12 , 0 &lt;  x  &lt; 3) lithium ionic conductor, possesses high ionic conductivity at ambient temperature and sufficiently high electrochemical stability compared to well-established types of solid electrolytes. This ensures LATP being potentially used as solid electrolyte for all-solid-state supercapacitors. In the pure ionic conductors like LATP, the stoichiometry change under work potential for energy storage is not possible. Therefore, it is essential to produce heterophase contacts, at which the compositional changes could occur. Carbon nanotube (CNT), an excellent electronical conductor, has been consequently mixed with LATP. The all-solid-state supercapacitors with this LATP/CNT mixture have been manufactured in sandwich structure—two mixture layers separated by a pure LATP layer as separator. And the impedance behavior as well as supercapacitance dependent on various CNT weight percentages (1–7.5%) has been investigated by electrochemical impedance spectroscopy and cyclic voltammetry. The results clearly prove that electrical double layer could be formed at the heterophase contacts indicating the supercapacitance behavior of the device, especially when the high contents of CNTs are used. The capacitance of specimen without CNT shows only a value of 0.52 mF/cm 3 , which is strongly promoted to 11.59 mF/cm 3 when CNT content increases to 7.5%.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-017-3849-z</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5464-3242</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-8488
ispartof Journal of solid state electrochemistry, 2018, Vol.22 (4), p.1055-1061
issn 1432-8488
1433-0768
language eng
recordid cdi_proquest_journals_2014739972
source SpringerLink Journals
subjects Aluminum
Ambient temperature
Analytical Chemistry
Carbon nanotubes
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Conductors
Electric contacts
Electrical resistivity
Electrochemical impedance spectroscopy
Electrochemistry
Electrolytes
Energy Storage
Ion currents
Lithium
Molten salt electrolytes
Nanotubes
Original Paper
Physical Chemistry
Sandwich structures
Solid electrolytes
Solid state
Stoichiometry
Supercapacitors
title Nanostructured all-solid-state supercapacitors based on NASICON-type Li1.4Al0.4Ti1.6(PO4)3 electrolyte
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A37%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructured%20all-solid-state%20supercapacitors%20based%20on%20NASICON-type%20Li1.4Al0.4Ti1.6(PO4)3%20electrolyte&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Liao,%20Guangyue&rft.date=2018&rft.volume=22&rft.issue=4&rft.spage=1055&rft.epage=1061&rft.pages=1055-1061&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-017-3849-z&rft_dat=%3Cproquest_cross%3E2014739972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014739972&rft_id=info:pmid/&rfr_iscdi=true