Extension Theorems for Large Scale Spaces via Coarse Neighbourhoods
We introduce the notion of (hybrid) large scale normal space and prove coarse geometric analogues of Urysohn’s Lemma and the Tietze Extension Theorem for these spaces, where continuous maps are replaced by (continuous and) slowly oscillating maps. To do so, we first prove a general form of each of t...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2018-04, Vol.15 (2), p.1-28, Article 59 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Mediterranean journal of mathematics |
container_volume | 15 |
creator | Dydak, Jerzy Weighill, Thomas |
description | We introduce the notion of (hybrid) large scale normal space and prove coarse geometric analogues of Urysohn’s Lemma and the Tietze Extension Theorem for these spaces, where continuous maps are replaced by (continuous and) slowly oscillating maps. To do so, we first prove a general form of each of these results in the context of a set equipped with a neighbourhood operator satisfying certain axioms, from which we obtain both the classical topological results and the (hybrid) large scale results as corollaries. We prove that all metric spaces are hybrid large scale normal, and characterize those locally compact abelian groups which (as hybrid large scale spaces) are hybrid large scale normal. Finally, we look at some properties of the Higson compactifications and coronas of hybrid large scale normal spaces. |
doi_str_mv | 10.1007/s00009-018-1106-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2014737007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014737007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3f9b06b51b788b7941f329a76f1994456e736b6d05cf9357472e3fd8571f2f23</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczSTz81RlvoBRQ_2HrLbpN3SbmrSivbXm7KiJ-cwM4f3fWd4ELoGeguU6rtMSxlCoSIAVJHDCRqBUpRIIcXp7y7UObrIeUUpM8DZCNWTz53vcxd7PFv6mPwm4xATnrq08PitdevSt671GX90DtfRpezxi-8Wyybu0zLGeb5EZ8Gts7_6mWM0e5jM6icyfX18ru-npOWgdoQH01DVSGh0VTXaCAicGadVAGOEkMprrho1p7INhkstNPM8zCupIbDA-BjdDLHbFN_3Pu_sqnzQl4uWURCa6wKiqGBQtSnmnHyw29RtXPqyQO0RlR1Q2YLKHlHZQ_GwwZOLtl_49Jf8v-kbFzhqkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014737007</pqid></control><display><type>article</type><title>Extension Theorems for Large Scale Spaces via Coarse Neighbourhoods</title><source>SpringerLink Journals</source><creator>Dydak, Jerzy ; Weighill, Thomas</creator><creatorcontrib>Dydak, Jerzy ; Weighill, Thomas</creatorcontrib><description>We introduce the notion of (hybrid) large scale normal space and prove coarse geometric analogues of Urysohn’s Lemma and the Tietze Extension Theorem for these spaces, where continuous maps are replaced by (continuous and) slowly oscillating maps. To do so, we first prove a general form of each of these results in the context of a set equipped with a neighbourhood operator satisfying certain axioms, from which we obtain both the classical topological results and the (hybrid) large scale results as corollaries. We prove that all metric spaces are hybrid large scale normal, and characterize those locally compact abelian groups which (as hybrid large scale spaces) are hybrid large scale normal. Finally, we look at some properties of the Higson compactifications and coronas of hybrid large scale normal spaces.</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-018-1106-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Axioms ; Coronas ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Mediterranean journal of mathematics, 2018-04, Vol.15 (2), p.1-28, Article 59</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3f9b06b51b788b7941f329a76f1994456e736b6d05cf9357472e3fd8571f2f23</citedby><cites>FETCH-LOGICAL-c316t-3f9b06b51b788b7941f329a76f1994456e736b6d05cf9357472e3fd8571f2f23</cites><orcidid>0000-0003-2614-0979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00009-018-1106-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00009-018-1106-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dydak, Jerzy</creatorcontrib><creatorcontrib>Weighill, Thomas</creatorcontrib><title>Extension Theorems for Large Scale Spaces via Coarse Neighbourhoods</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>We introduce the notion of (hybrid) large scale normal space and prove coarse geometric analogues of Urysohn’s Lemma and the Tietze Extension Theorem for these spaces, where continuous maps are replaced by (continuous and) slowly oscillating maps. To do so, we first prove a general form of each of these results in the context of a set equipped with a neighbourhood operator satisfying certain axioms, from which we obtain both the classical topological results and the (hybrid) large scale results as corollaries. We prove that all metric spaces are hybrid large scale normal, and characterize those locally compact abelian groups which (as hybrid large scale spaces) are hybrid large scale normal. Finally, we look at some properties of the Higson compactifications and coronas of hybrid large scale normal spaces.</description><subject>Axioms</subject><subject>Coronas</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczSTz81RlvoBRQ_2HrLbpN3SbmrSivbXm7KiJ-cwM4f3fWd4ELoGeguU6rtMSxlCoSIAVJHDCRqBUpRIIcXp7y7UObrIeUUpM8DZCNWTz53vcxd7PFv6mPwm4xATnrq08PitdevSt671GX90DtfRpezxi-8Wyybu0zLGeb5EZ8Gts7_6mWM0e5jM6icyfX18ru-npOWgdoQH01DVSGh0VTXaCAicGadVAGOEkMprrho1p7INhkstNPM8zCupIbDA-BjdDLHbFN_3Pu_sqnzQl4uWURCa6wKiqGBQtSnmnHyw29RtXPqyQO0RlR1Q2YLKHlHZQ_GwwZOLtl_49Jf8v-kbFzhqkw</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Dydak, Jerzy</creator><creator>Weighill, Thomas</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2614-0979</orcidid></search><sort><creationdate>20180401</creationdate><title>Extension Theorems for Large Scale Spaces via Coarse Neighbourhoods</title><author>Dydak, Jerzy ; Weighill, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3f9b06b51b788b7941f329a76f1994456e736b6d05cf9357472e3fd8571f2f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Axioms</topic><topic>Coronas</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dydak, Jerzy</creatorcontrib><creatorcontrib>Weighill, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dydak, Jerzy</au><au>Weighill, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension Theorems for Large Scale Spaces via Coarse Neighbourhoods</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>15</volume><issue>2</issue><spage>1</spage><epage>28</epage><pages>1-28</pages><artnum>59</artnum><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>We introduce the notion of (hybrid) large scale normal space and prove coarse geometric analogues of Urysohn’s Lemma and the Tietze Extension Theorem for these spaces, where continuous maps are replaced by (continuous and) slowly oscillating maps. To do so, we first prove a general form of each of these results in the context of a set equipped with a neighbourhood operator satisfying certain axioms, from which we obtain both the classical topological results and the (hybrid) large scale results as corollaries. We prove that all metric spaces are hybrid large scale normal, and characterize those locally compact abelian groups which (as hybrid large scale spaces) are hybrid large scale normal. Finally, we look at some properties of the Higson compactifications and coronas of hybrid large scale normal spaces.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-018-1106-z</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-2614-0979</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-5446 |
ispartof | Mediterranean journal of mathematics, 2018-04, Vol.15 (2), p.1-28, Article 59 |
issn | 1660-5446 1660-5454 |
language | eng |
recordid | cdi_proquest_journals_2014737007 |
source | SpringerLink Journals |
subjects | Axioms Coronas Mathematics Mathematics and Statistics Theorems |
title | Extension Theorems for Large Scale Spaces via Coarse Neighbourhoods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20Theorems%20for%20Large%20Scale%20Spaces%20via%20Coarse%20Neighbourhoods&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=Dydak,%20Jerzy&rft.date=2018-04-01&rft.volume=15&rft.issue=2&rft.spage=1&rft.epage=28&rft.pages=1-28&rft.artnum=59&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-018-1106-z&rft_dat=%3Cproquest_cross%3E2014737007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014737007&rft_id=info:pmid/&rfr_iscdi=true |