Extension Theorems for Large Scale Spaces via Coarse Neighbourhoods

We introduce the notion of (hybrid) large scale normal space and prove coarse geometric analogues of Urysohn’s Lemma and the Tietze Extension Theorem for these spaces, where continuous maps are replaced by (continuous and) slowly oscillating maps. To do so, we first prove a general form of each of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2018-04, Vol.15 (2), p.1-28, Article 59
Hauptverfasser: Dydak, Jerzy, Weighill, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 2
container_start_page 1
container_title Mediterranean journal of mathematics
container_volume 15
creator Dydak, Jerzy
Weighill, Thomas
description We introduce the notion of (hybrid) large scale normal space and prove coarse geometric analogues of Urysohn’s Lemma and the Tietze Extension Theorem for these spaces, where continuous maps are replaced by (continuous and) slowly oscillating maps. To do so, we first prove a general form of each of these results in the context of a set equipped with a neighbourhood operator satisfying certain axioms, from which we obtain both the classical topological results and the (hybrid) large scale results as corollaries. We prove that all metric spaces are hybrid large scale normal, and characterize those locally compact abelian groups which (as hybrid large scale spaces) are hybrid large scale normal. Finally, we look at some properties of the Higson compactifications and coronas of hybrid large scale normal spaces.
doi_str_mv 10.1007/s00009-018-1106-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2014737007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014737007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3f9b06b51b788b7941f329a76f1994456e736b6d05cf9357472e3fd8571f2f23</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczSTz81RlvoBRQ_2HrLbpN3SbmrSivbXm7KiJ-cwM4f3fWd4ELoGeguU6rtMSxlCoSIAVJHDCRqBUpRIIcXp7y7UObrIeUUpM8DZCNWTz53vcxd7PFv6mPwm4xATnrq08PitdevSt671GX90DtfRpezxi-8Wyybu0zLGeb5EZ8Gts7_6mWM0e5jM6icyfX18ru-npOWgdoQH01DVSGh0VTXaCAicGadVAGOEkMprrho1p7INhkstNPM8zCupIbDA-BjdDLHbFN_3Pu_sqnzQl4uWURCa6wKiqGBQtSnmnHyw29RtXPqyQO0RlR1Q2YLKHlHZQ_GwwZOLtl_49Jf8v-kbFzhqkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014737007</pqid></control><display><type>article</type><title>Extension Theorems for Large Scale Spaces via Coarse Neighbourhoods</title><source>SpringerLink Journals</source><creator>Dydak, Jerzy ; Weighill, Thomas</creator><creatorcontrib>Dydak, Jerzy ; Weighill, Thomas</creatorcontrib><description>We introduce the notion of (hybrid) large scale normal space and prove coarse geometric analogues of Urysohn’s Lemma and the Tietze Extension Theorem for these spaces, where continuous maps are replaced by (continuous and) slowly oscillating maps. To do so, we first prove a general form of each of these results in the context of a set equipped with a neighbourhood operator satisfying certain axioms, from which we obtain both the classical topological results and the (hybrid) large scale results as corollaries. We prove that all metric spaces are hybrid large scale normal, and characterize those locally compact abelian groups which (as hybrid large scale spaces) are hybrid large scale normal. Finally, we look at some properties of the Higson compactifications and coronas of hybrid large scale normal spaces.</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-018-1106-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Axioms ; Coronas ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Mediterranean journal of mathematics, 2018-04, Vol.15 (2), p.1-28, Article 59</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3f9b06b51b788b7941f329a76f1994456e736b6d05cf9357472e3fd8571f2f23</citedby><cites>FETCH-LOGICAL-c316t-3f9b06b51b788b7941f329a76f1994456e736b6d05cf9357472e3fd8571f2f23</cites><orcidid>0000-0003-2614-0979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00009-018-1106-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00009-018-1106-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dydak, Jerzy</creatorcontrib><creatorcontrib>Weighill, Thomas</creatorcontrib><title>Extension Theorems for Large Scale Spaces via Coarse Neighbourhoods</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>We introduce the notion of (hybrid) large scale normal space and prove coarse geometric analogues of Urysohn’s Lemma and the Tietze Extension Theorem for these spaces, where continuous maps are replaced by (continuous and) slowly oscillating maps. To do so, we first prove a general form of each of these results in the context of a set equipped with a neighbourhood operator satisfying certain axioms, from which we obtain both the classical topological results and the (hybrid) large scale results as corollaries. We prove that all metric spaces are hybrid large scale normal, and characterize those locally compact abelian groups which (as hybrid large scale spaces) are hybrid large scale normal. Finally, we look at some properties of the Higson compactifications and coronas of hybrid large scale normal spaces.</description><subject>Axioms</subject><subject>Coronas</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczSTz81RlvoBRQ_2HrLbpN3SbmrSivbXm7KiJ-cwM4f3fWd4ELoGeguU6rtMSxlCoSIAVJHDCRqBUpRIIcXp7y7UObrIeUUpM8DZCNWTz53vcxd7PFv6mPwm4xATnrq08PitdevSt671GX90DtfRpezxi-8Wyybu0zLGeb5EZ8Gts7_6mWM0e5jM6icyfX18ru-npOWgdoQH01DVSGh0VTXaCAicGadVAGOEkMprrho1p7INhkstNPM8zCupIbDA-BjdDLHbFN_3Pu_sqnzQl4uWURCa6wKiqGBQtSnmnHyw29RtXPqyQO0RlR1Q2YLKHlHZQ_GwwZOLtl_49Jf8v-kbFzhqkw</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Dydak, Jerzy</creator><creator>Weighill, Thomas</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2614-0979</orcidid></search><sort><creationdate>20180401</creationdate><title>Extension Theorems for Large Scale Spaces via Coarse Neighbourhoods</title><author>Dydak, Jerzy ; Weighill, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3f9b06b51b788b7941f329a76f1994456e736b6d05cf9357472e3fd8571f2f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Axioms</topic><topic>Coronas</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dydak, Jerzy</creatorcontrib><creatorcontrib>Weighill, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dydak, Jerzy</au><au>Weighill, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension Theorems for Large Scale Spaces via Coarse Neighbourhoods</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>15</volume><issue>2</issue><spage>1</spage><epage>28</epage><pages>1-28</pages><artnum>59</artnum><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>We introduce the notion of (hybrid) large scale normal space and prove coarse geometric analogues of Urysohn’s Lemma and the Tietze Extension Theorem for these spaces, where continuous maps are replaced by (continuous and) slowly oscillating maps. To do so, we first prove a general form of each of these results in the context of a set equipped with a neighbourhood operator satisfying certain axioms, from which we obtain both the classical topological results and the (hybrid) large scale results as corollaries. We prove that all metric spaces are hybrid large scale normal, and characterize those locally compact abelian groups which (as hybrid large scale spaces) are hybrid large scale normal. Finally, we look at some properties of the Higson compactifications and coronas of hybrid large scale normal spaces.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-018-1106-z</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-2614-0979</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1660-5446
ispartof Mediterranean journal of mathematics, 2018-04, Vol.15 (2), p.1-28, Article 59
issn 1660-5446
1660-5454
language eng
recordid cdi_proquest_journals_2014737007
source SpringerLink Journals
subjects Axioms
Coronas
Mathematics
Mathematics and Statistics
Theorems
title Extension Theorems for Large Scale Spaces via Coarse Neighbourhoods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20Theorems%20for%20Large%20Scale%20Spaces%20via%20Coarse%20Neighbourhoods&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=Dydak,%20Jerzy&rft.date=2018-04-01&rft.volume=15&rft.issue=2&rft.spage=1&rft.epage=28&rft.pages=1-28&rft.artnum=59&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-018-1106-z&rft_dat=%3Cproquest_cross%3E2014737007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014737007&rft_id=info:pmid/&rfr_iscdi=true